Magnetic Field Due to a Curved Wire Segment

AI Thread Summary
The discussion centers on the integration method used for calculating the magnetic field due to a curved wire segment. Participants question the necessity of specifying limits of integration, noting that the integral can yield the same result without them. It is clarified that the problem allows for defining the integration path as a curve, which can simplify the notation. Additionally, the use of line integrals is mentioned as a way to denote summing over the path without explicitly defining endpoints. The conversation concludes with an acknowledgment of the clarification provided.
member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this problem,
1673674584161.png

The solution is,
1673674646262.png

However, why did they not use limits of integration for the integral in red? When I solved this, I used
1673674712595.png

as limits of integration.

I see that is not necessary since you get the same answer either way, but is there a deeper reason?

Many thanks!
 
Physics news on Phys.org
The text says "integrate over the curved path AC", so it was not essential to write that in the algebra. Also, one does not always have to specify the integration domain as a pair of endpoints. They could have defined S as the curve AC and written ##\int_S##.
 
  • Like
Likes MatinSAR and member 731016
haruspex said:
The text says "integrate over the curved path AC", so it was not essential to write that in the algebra. Also, one does not always have to specify the integration domain as a pair of endpoints. They could have defined S as the curve AC and written ##\int_S##.
Thanks for your help @haruspex ! That second notation you mention makes more sense than their single integral over ds. I think another way to avoid implicitly defining an integration domain is by using a line integral
1673676771265.png
to denote that we are summing the length elements over the path, correct?
 

Attachments

  • 1673676644883.png
    1673676644883.png
    963 bytes · Views: 122
Callumnc1 said:
Thanks for your help @haruspex ! That second notation you mention makes more sense than their single integral over ds. I think another way to avoid implicitly defining an integration domain is by using a line integral View attachment 320352to denote that we are summing the length elements over the path, correct?
No, that symbol is for integrating around a closed loop.
 
  • Like
Likes hutchphd and member 731016
haruspex said:
No, that symbol is for integrating around a closed loop.
Oh, thank you for your help @haruspex !
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top