bobred
- 170
- 0
Homework Statement
Cylinder of radius a and a cylindrical hole b < a is displaced a distance d in x-direction. Current density \textbf{J}=J_z\textbf{e}_z. Show that a uniform magnetic field inside the hole is
\textbf{B}=\frac{\mu_0}{2}J_zd\textbf{e}_y
Homework Equations
Using previous result of whole cylinder
\textbf{B}=\frac{\mu_0}{2}J_z(-y\textbf{e}_x + x\textbf{e}_y)
and that the cylindrical hole can be modeled as a charge density of -J_z\textbf{e}_z.
The Attempt at a Solution
I tried superposition of fields so
\textbf{B}_1=\frac{\mu_0}{2}J_z(-y\textbf{e}_x + x\textbf{e}_y)
\textbf{B}_2=-\frac{\mu_0}{2}J_z(-y\textbf{e}_x + (x + d)\textbf{e}_y)
\textbf{B}= \textbf{B}_1 + \textbf{B}_2 to which I get
\textbf{B}=-\frac{\mu_0}{2}J_zd\textbf{e}_y
Any ideas, is this the right approach?