- #1

zero1342

- 3

- 0

## Homework Statement

Find the magnetic field at position z (z=0 in the plane of the ring) along the rotation axis for a circular ring of radius r, carrying a uniform linear charge density λ, and rotating about its axis with angular velocity ω.

## Homework Equations

I=q/t

ω=2πf

f=1/period

Biot-Savart Law

## The Attempt at a Solution

I can determine the magnetic field when the ring is just a current loop that is not rotating. Once the rotation comes into play I get really confused about how to handle the linear charge density λ and the angular velocity.

I see that I can solve for time in the equation for current (I=q/t) and end up with: I=(qω)/(2π)

I think λ=charge/length but should it instead be: λ=dq/dl?