Magnetic forces exerted by current-carrying wires

AI Thread Summary
The discussion focuses on determining the current required for an upper wire to "float" between two lower wires carrying equal currents. The lower wires exert attractive magnetic forces on each other due to their parallel currents, while the upper wire must be repelled by these forces to balance its weight. It is clarified that the upper wire is indeed parallel to the lower wires, and the forces acting on it can be resolved into components. The participants discuss using the force per unit length and mass per unit length to calculate the necessary parameters. The conclusion is that by equating the magnetic force to the weight of the upper wire, the lengths will cancel out, allowing for the calculation of the required current.
SA32
Messages
31
Reaction score
0

Homework Statement


The figure (http://img.photobucket.com/albums/v80/northerndancer/thefigure.jpg?t=1173558797 ) is a cross section through three long wires with linear mass density 50 g/m. They each carry equal currents in the directions shown. The lower two wires are 4.0 cm apart and are attached to a table. What current I will allow the upper wire to "float" so as to form an equilateral triangle with the lower wires?

Homework Equations


F=I1LB2 (magnetic force between two parallel wires)
F=mg (force due to an object's weight)



The Attempt at a Solution


The two bottom wires exert attractive magnetic forces on each other because they are parallel and both of their currents move in the same direction. In order for the third wire to "float", it must be repelled by the two lower wires by a magnetic force equal and opposite to its weight. But:

-The upper wire is not parallel to the lower wires, so I'm not sure how to calculate the force each lower wire exerts on the upper wire.
-How do I calculate the mass of the upper wire if I don't know its length?

Thanks for any hints.
 
Last edited by a moderator:
Physics news on Phys.org
SA32 said:
In order for the third wire to "float", it must be repelled by the two lower wires by a magnetic force equal and opposite to its weight.
Good!

But:

-The upper wire is not parallel to the lower wires, so I'm not sure how to calculate the force each lower wire exerts on the upper wire.
Sure they are parallel. They are not in the same vertical line, but all three wires are parallel. What direction is the force from each lower wire on the top wire? Hint: Consider the vertical and horizontal components of those forces.
-How do I calculate the mass of the upper wire if I don't know its length?
Think in terms of force per unit length and mass per unit length.
 
Okay I think I see, the top wire is parallel to each of the bottom wires, just the force from each has both an x-component and y-component. But the x-components cancel out and so the net magnetic force on the top wire is just straight up, isn't it?

And looking again at the equation for the force between parallel wires, I think I get what you mean about the mass. The equation for magnetic force involves L, and then if I equate it to mg and make "m" = (50 g/m)*L the lengths should cancel out?
 
Exactly right.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top