Pick a vertex. Consider only the faces of the polyhedron which share that vertex. Now, imagine cutting one edge and laying the resulting shape out flat, like a dressmaker's pattern. Now, consider how much angle each edge would have to be folded through to recreate the original polyhedron's vertex. That is, how much angle is required to rotate the cut edges enough so that they coincide as one edge again. You can use the angle of edge bending to compute the dihedral angle.
Also, if you know them you can use the geometric properties of the polyhedron, such as the relation between edge length and the distance from the center of the polyhedron to the center of a face. Then simply consider a triangle with one vertex at the polyhedron's center, one at the center of a face, and the third at the center of one of that face's edges.