Because of boundary points, I can sort of see intuitively why Euclidean half-space, i.e. {(x_1, ... , x_n) : x_n >= 0} is not a manifold, but is there a simple rigorous argument for why Euclidean half-space is not homeomorphic to an open set of R^n. I do not know too much topology and the topological properties I am familiar with (e.g. compactness, connectedness, fundamental group) are the same for both spaces.(adsbygoogle = window.adsbygoogle || []).push({});

Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Manifold with Boundary

Loading...

Similar Threads for Manifold Boundary |
---|

A Smooth extension on manifolds |

I Manifold with a boundary |

I Parallelizable Manifold |

A On the dependence of the curvature tensor on the metric |

A Can you give an example of a non-Levi Civita connection? |

**Physics Forums | Science Articles, Homework Help, Discussion**