Manipulation of Cartesian Tensors

Hoplite
Messages
50
Reaction score
0
I have a question relating to a particle rotating around a point with velocity u = \Omega \times r, where \Omega is the angular velocity and r is the position relative to the pivot point.

I need to prove that the acceleration is given by,

a = -\frac{1}{2} \nabla [(\Omega \times r)^2]

I figured it should follow from the fact that,

a = \frac{du}{dt} = \frac{\partial u}{\partial t} + u \cdot \nabla u = u \cdot \nabla u

But I can't work out where to go from there. We are supposed to use Cartesian tensor methods to work it out.

Could anyone help me out?
 
Physics news on Phys.org
\vec{a}=\frac{d\vec{v}}{dt}=\frac{d}{dt}\left(\vec{\Omega}\times \vec{r}\right) =\frac{d\vec{\Omega}}{dt}\times\vec{r} +\vec{\Omega}\times\frac{d\vec{r}}{dt}

Daniel.
 
\frac{d\vec{\Omega}}{dt}=\left(\vec{\Omega}\times \vec{r}\cdot\nabla\right)\vec{\Omega}

\frac{d\vec{\Omega}}{dt}\times \vec{r}=\left[\left(\vec{\Omega}\times \vec{r}\cdot\nabla\right)\vec{\Omega}\right]\times \vec{r}= \frac{1}{2}\nabla\left[\left(\vec{\Omega}\times\vec{r}\right)\cdot\left(\vec{\Omega}\times\vec{r}\right)\right] -\vec{\Omega}\times\left(\vec{\Omega}\times\vec{r}\cdot\nabla\right)\vec{r}

In the end i get the plus sign.

Daniel.
 
Last edited:
Thanks, Daniel.

Yeah, I suspect the negative sign was a typo on the question sheet, especially considering the identity,

\vec u \cdot \nabla \vec u = \frac{1}{2} \nabla (\vec u \cdot \vec u) + (\nabla \times \vec u) \times \vec u
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top