Mass-Energy Conversion in Bound Systems

  • Thread starter Thread starter K8181
  • Start date Start date
  • Tags Tags
    Energy Mass
K8181
Messages
19
Reaction score
0
I have a fundamental question. I am reading this modern physics book, and it says that an electron and a proton that are released and come together into a bound state release a photon. Fine. But the explanation given is that the sum of the individual masses of the proton and electron is greater than the mass of the bound system, and that the extra rest mass was converted to energy in the release of the photon. I am confused because it seems that an equally good explanation is that the electron and proton have a potential energy when they are apart, and it is this energy that is released as a photon. Here there would be no conversion of mass into energy needed to save conservation of energy. Does the bound system behave as though it has less mass than the constituent particles, or is the second explanation just as good? Please help. :confused:
 
Physics news on Phys.org
Both descriptions are correct, they just focus on different things.
K8181 said:
Does the bound system behave as though it has less mass than the constituent particles, or is the second explanation just as good?
It doesn't just "behave as though", it actually has less mass. You can put it on a scale to check. Well, there will be experimental difficulties, but at least it is possible in principle.
 
Thread 'Why is there such a difference between the total cross-section data? (simulation vs. experiment)'
Well, I'm simulating a neutron-proton scattering phase shift. The equation that I solve numerically is the Phase function method and is $$ \frac{d}{dr}[\delta_{i+1}] = \frac{2\mu}{\hbar^2}\frac{V(r)}{k^2}\sin(kr + \delta_i)$$ ##\delta_i## is the phase shift for triplet and singlet state, ##\mu## is the reduced mass for neutron-proton, ##k=\sqrt{2\mu E_{cm}/\hbar^2}## is the wave number and ##V(r)## is the potential of interaction like Yukawa, Wood-Saxon, Square well potential, etc. I first...
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...

Similar threads

Replies
9
Views
216
Replies
7
Views
2K
Replies
15
Views
3K
Replies
3
Views
2K
Replies
1
Views
2K
Replies
3
Views
944
Back
Top