Mass moving on hoop (with hoop itself rotating)

  • Thread starter Thread starter MisterX
  • Start date Start date
  • Tags Tags
    Mass Rotating
MisterX
Messages
758
Reaction score
71

Homework Statement


vUM7fhv.png



Homework Equations



\frac{\partial\mathcal{L} }{\partial q} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}}
\cos (\alpha - \beta) = cos(\alpha)cos(\beta) + sin(\alpha)sin(\beta)

The Attempt at a Solution



The position of the center is
<br /> \frac{D}{2}\left(cos(\omega t)\hat{x} + sin (\omega t)\hat{y}\right)<br />
The vector from the center to the mass is
<br /> \frac{D}{2}\left(cos(\omega t + \phi)\hat{x} + sin (\omega t +\phi)\hat{y}\right)<br />
The position of the mass is the sume of these two vectors
<br /> \frac{D}{2}\left[\left(cos(\omega t) + cos(\omega t + \phi)\right)\hat{x} +\left(sin(\omega t) + sin(\omega t + \phi)\right)\hat{y}\right]<br />
The velocity is
<br /> \frac{D}{2}\left[-\left(sin(\omega t)\omega + sin(\omega t + \phi)\left(\omega + \dot{\phi}\right)\right)\hat{x} +\left(cos(\omega t)\omega + cos(\omega t + \phi)\left(\omega + \dot{\phi}\right)\right)\hat{y}\right]<br />
The velocity squared is
<br /> \frac{D^2}{4}\left[\omega^2sin^2(\omega t) +2\omega sin(\omega t)sin(\omega t + \phi)\left(\omega + \dot{\phi}\right) +sin^2(\omega t + \phi)\left(\omega + \dot{\phi}\right)^2\right]
<br /> +\frac{D^2}{4}\left[\omega^2cos^2(\omega t) +2\omega cos(\omega t)cos(\omega t + \phi)\left(\omega + \dot{\phi}\right) +cos^2(\omega t + \phi)\left(\omega + \dot{\phi}\right)^2\right]
<br /> =\frac{D^2}{4}\left[\omega^2 +2\omega\left(\omega + \dot{\phi}\right)\left[ sin(\omega t)sin(\omega t + \phi) + cos(\omega t)cos(\omega t + \phi) \right] +\left(\omega + \dot{\phi}\right)^2\right]
<br /> \cos (\alpha - \beta) = cos(\alpha)cos(\beta) + sin(\alpha)sin(\beta)<br />
<br /> v^2 =\frac{D^2}{4}\left[\omega^2 +2\omega\left(\omega + \dot{\phi}\right)cos(\phi) +\left(\omega + \dot{\phi}\right)^2\right]
If I set \phi = 0 and \dot{\phi} = 0, I get v^2 = D^2\omega^2, which is what I expect, since the diameter should just be rotating with angular frequency \omega in this case.


<br /> U = mgy = mg\frac{D}{2}\left(sin(\omega t) + sin(\omega t + \phi)\right)<br />

<br /> \mathcal{L} =\frac{mD^2}{8}\left[\omega^2 +2\omega\left(\omega + \dot{\phi}\right)cos(\phi) +\left(\omega + \dot{\phi}\right)^2\right] -mg\frac{D}{2}\left(sin(\omega t) + sin(\omega t + \phi)\right)<br />

\frac{\partial\mathcal{L} }{\partial \phi} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\phi}}
\frac{\partial\mathcal{L} }{\partial \phi} = - \frac{mD^2}{8}2\omega\left(\omega + \dot{\phi}\right)sin(\phi) -mg\frac{D}{2}\cos(\omega t + \phi)
\frac{\partial \mathcal{L}}{\partial \dot{\phi}} = \frac{mD^2}{8}\left[ 2\omega cos(\phi) + 2\dot{\phi} + 2\omega \right] = \frac{mD^2}{4}\left[ \omega cos(\phi) + \dot{\phi} + \omega \right]
\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{\phi}} = \frac{mD^2}{4}\left[- \omega sin(\phi)\dot{\phi} + \ddot{\phi}\right]
<br /> \frac{mD^2}{4}\ddot{\phi} = - \frac{mD^2}{4}\omega\dot{\phi}sin(\phi) - mg\frac{D}{2}\cos(\omega t + \phi) <br />
<br /> \ddot{\phi} = -\omega\dot{\phi}sin(\phi) - \frac{2g}{D}\cos(\omega t + \phi) <br />
That doesn't look exactly like a simple pendulum to me. I'd appreciate some help.
 
Physics news on Phys.org
Nicely written!

The problem says that the system rotates about a vertical axis. So, does that imply that the system rotates in a horizontal plane?

Check to see if you might have made a careless error when combining terms to get
\frac{mD^2}{4}\ddot{\phi} = - \frac{mD^2}{4}\omega\dot{\phi}sin(\phi) - mg\frac{D}{2}\cos(\omega t + \phi) <br />

I'm not sure the first term on the right should be there and I think you overlooked a term that should be there.
 
TSny said:
Nicely written!

The problem says that the system rotates about a vertical axis. So, does that imply that the system rotates in a horizontal plane?

Thanks for noticing this. I had interpreted the rotation as being in a vertical plane. So with a horizontal plane I may have U = 0. I also left out a term when connecting both sides of the Euler-Lagrange Equation. Part of the term I omitted cancels the "first term on the right" that you weren't sure should be there.

<br /> \mathcal{L} =\frac{mD^2}{8}\left[\omega^2 +2\omega\left(\omega + \dot{\phi}\right)cos(\phi) +\left(\omega + \dot{\phi}\right)^2\right] <br />

\frac{\partial\mathcal{L} }{\partial \phi} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\phi}}
\frac{\partial\mathcal{L} }{\partial \phi} = - \frac{mD^2}{8}2\omega\left(\omega + \dot{\phi}\right)sin(\phi) = - \frac{mD^2}{4}\omega\left(\omega + \dot{\phi}\right)sin(\phi)\frac{\partial \mathcal{L}}{\partial \dot{\phi}} = \frac{mD^2}{8}\left[ 2\omega cos(\phi) + 2\dot{\phi} + 2\omega \right] = \frac{mD^2}{4}\left[ \omega cos(\phi) + \dot{\phi} + \omega \right]
\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{\phi}} = \frac{mD^2}{4}\left[- \omega sin(\phi)\dot{\phi} + \ddot{\phi}\right]

\frac{\partial\mathcal{L} }{\partial \phi} = - \frac{mD^2}{4}\omega\left(\omega + \dot{\phi}\right)sin(\phi) = \frac{mD^2}{4}\left[- \omega sin(\phi)\dot{\phi} + \ddot{\phi}\right] = \frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{\phi}}

- \omega\left(\omega + \dot{\phi}\right)sin(\phi) = - \omega sin(\phi)\dot{\phi} + \ddot{\phi}
- \omega^2sin(\phi) -\omega\dot{\phi} sin(\phi) = - \omega sin(\phi)\dot{\phi} + \ddot{\phi}
The - \omega sin(\phi)\dot{\phi} may be removed from both sides.
\ddot{\phi} + \omega^2sin(\phi) = 0
 
Last edited:
Looks good to me.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top