You could also just use some brute force and integration by parts:
let ##\alpha = \frac{x-c}{b}##
You will have ## \int_{\frac{-c}{b}}^\infty e^{-\alpha^2} d\alpha ##
by parts, ##u = e^{-\alpha^2}, \, du = -2\alpha u d\alpha ##
## v = \alpha, \, dv = d\alpha ##
## \int_{\frac{-c}{b}}^\infty e^{-\alpha^2}d\alpha = \left. uv \right|_{\frac{-c}{b}}^\infty + 2 \int_{\frac{-c}{b}}^\infty \alpha^2 e^{-\alpha^2} d\alpha ##
##\int_{\frac{-c}{b}}^\infty \alpha^2 e^{-\alpha^2} d\alpha ## can again be evaluated by parts...
substituting ##\beta = \alpha^2 ## gives ##-\int_{\frac{-c^2}{b^2}}^{-\infty} \beta e^{\beta} d\beta ##
Let ## u = \beta, \, du = d\beta ## and ## v=e^\beta, \, dv = e^\beta d\beta ## .
One more time, and keep track of your signs, do some algebra, and before you know it... Solved.
However, I think the suggesions above may prove to be more elegant.