Your answers to 1. are not correct; you can confirm by graphing the function on a graphing calculator. It is not true that the fraction has a limit of infinity or negative infinity just because it is being divided by an expression containing x. What matters is how fast the numerator and denominator are increasing relative to each other. In this case, we see that the denominator has a factor of x. The numerator has a factor of x2 under a square root, so roughly a factor of x also. From this quick analysis, which you develop from experience, we can guess that the limit is going to be an actual number (roughly, the x's "cancel" to leave some real number behind).
How would we find the limit in this case? The square root is a problem, because we can't break it up. One way to take care of this is to simply put the bottom under a square root as well, so that you can combine the numerator and denominator under a huge square root. Try this, and play with it.For your number 2, recheck your answer. What is the sign of the denominator? What is the sign of the numerator?For your number 3, only your third one is correct. In fact, a limit of positive or negative infinity would imply that those functions do not have a horizontal asymptote. Why? Explain your through process to us so that we can see where you are going wrong. For the fourth and fifth ones, you can do something similar to 1.4. f(s) is piecewise, and each piece is continuous (very simply, because s2-c and cs+1 are polynomials). The only part where the function might not be continuous is at the point where the two branches meet, at s = 8. What must be true about the two branches of the function when s = 8 for the function to be continuous? Why?5. Yes, you are right that you must redefine f(-3) = 2 for the function to be continuous. However, why would the function be continuous if that is true? You can try graphing it to see what happens if f(-3) is not equal to 2. Finally, remember that you must also show that there is a removable discontinuity in the first place at x = -3. Since f(-3) is defined, you must then show that the function is not continuous at x = -3. This should be simple if you have a clear understanding of why f(-3) must equal 2.Last question. Unfortunately, the answer is not 6. How did you reach that conclusion? This question is actually a little tricky. You might want to start by first writing tan6x in terms of sine and cosine. Then, you can use the fact that sin(y)/y = 1 as y -> 0.