Adesh
- 735
- 191
@wrobel Сэр, я получаю равенство, а не неравенство, here is my attempt.
##f(x+a)## has period 1, ##f(x)## has also period 1, therefore ##g(x) = \frac{f(x+a)}{f(x)}## will have a period 1.
Trigonometric Fourier Series for ##g(x) = \frac{f(x+a)}{f(x)}## is
$$
\frac{f(x+a)}{f(x)} = a_0 \sum_{n=1}^{\infty} \left[ a_n \cos (2\pi n x) + b_n \sin (2\pi nx)\right]
$$
$$
\int_{0}^{1} \frac{f(x+a)}{f(x)} = \int_{0}^{1} a_0 dx + 0 $$
$$\int_{0}^{1} \frac{f(x+a)}{f(x)} = a_0
$$
Fourier exponential series for ##f(x)## and ##f(x+a)##
$$
f(x+a) = \sum_{n=-\infty}^{\infty} c_n e^{i 2\pi n (x+a) } = \sum_{n=-\infty}^{\infty} c_n e^{i 2\pi n x} e^{i2\pi na}
$$
$$
f(x) = \sum_{n=-\infty}^{\infty} c'_n e^{i2\pi nx}
$$
$$
g(x) = \frac{f(x+a)}{f(x)} = \frac{\sum_{n=-\infty}^{\infty} c_n e^{i2\pi nx} e^{i2\pi na} }
{ \sum_{n=-\infty}^{\infty} c'_n e^{i2\pi nx} }
$$
$$
a_0 = \frac{c_0}{c'_0}
$$
##c_0## and ##c'_0## are the average values of ##f(x+a)## and ##f(x)##.
$$
c_0 = \int_{0}^{1} f(x+a) dx = \int_{a}^{1+a} f(u) du $$
##u = x+a##.
$$
c'_0 = \int_{0}^{1} f(x) dx
$$
Therefore, ##c_0 = c'_0##. Hence, ##a_0 = \frac{c_0}{c'_0} = 1##. So, finally we have
$$
\int_{0}^{1} \frac{f(x+a)}{f(x)} = 1
$$
I don't know where the mistakes lies because of which I'm not getting an inequality.
Trigonometric Fourier Series for ##g(x) = \frac{f(x+a)}{f(x)}## is
$$
\frac{f(x+a)}{f(x)} = a_0 \sum_{n=1}^{\infty} \left[ a_n \cos (2\pi n x) + b_n \sin (2\pi nx)\right]
$$
$$
\int_{0}^{1} \frac{f(x+a)}{f(x)} = \int_{0}^{1} a_0 dx + 0 $$
$$\int_{0}^{1} \frac{f(x+a)}{f(x)} = a_0
$$
Fourier exponential series for ##f(x)## and ##f(x+a)##
$$
f(x+a) = \sum_{n=-\infty}^{\infty} c_n e^{i 2\pi n (x+a) } = \sum_{n=-\infty}^{\infty} c_n e^{i 2\pi n x} e^{i2\pi na}
$$
$$
f(x) = \sum_{n=-\infty}^{\infty} c'_n e^{i2\pi nx}
$$
$$
g(x) = \frac{f(x+a)}{f(x)} = \frac{\sum_{n=-\infty}^{\infty} c_n e^{i2\pi nx} e^{i2\pi na} }
{ \sum_{n=-\infty}^{\infty} c'_n e^{i2\pi nx} }
$$
$$
a_0 = \frac{c_0}{c'_0}
$$
##c_0## and ##c'_0## are the average values of ##f(x+a)## and ##f(x)##.
$$
c_0 = \int_{0}^{1} f(x+a) dx = \int_{a}^{1+a} f(u) du $$
##u = x+a##.
$$
c'_0 = \int_{0}^{1} f(x) dx
$$
Therefore, ##c_0 = c'_0##. Hence, ##a_0 = \frac{c_0}{c'_0} = 1##. So, finally we have
$$
\int_{0}^{1} \frac{f(x+a)}{f(x)} = 1
$$
I don't know where the mistakes lies because of which I'm not getting an inequality.