Adesh
- 735
- 191
I think, pal, you missed the equality. The first expression should beetotheipi said:If you add them, using ##\sin^4{x} + \cos^4{x} \in [\frac{1}{2},1]##, you can get the inequality $$x^4 + y^4 + 2x^2 y^2 -4(x^2 + y^2) < -4$$ $$(x^2 + y^2)^2 -4(x^2 + y^2) + 4 < 0$$ $$([x^2 + y^2] -2)^2 < 0$$That would seem to imply that there are no possible values of ##x^2 + y^2## that satisfy the inequality, and that there are no solutions.
$$x^4 + y^4 + 2x^2 y^2 -4(x^2 + y^2) \leq -4$$
because 1 is allowed. Hence, your last expression becomes
$$([x^2 + y^2] -2)^2 \leq 0$$
since we want only real solutions, therefore equality is something that we want (a square cannot be less than zero if it's components are less than 0). So, we have
$$
[(x^2 +y^2)-2]^2= 0$$
$$
x^2 + y^2 = 2 $$
With this value we can put it into our original given equations to get the real solutions.
(Pal I'm not alluding anything to our discussion in that thread, we are friends and I respect that).
