nhrock3
- 403
- 0
\vec{E}=f_1(z-ct)\hat{x}+f_2(z-ct)\hat{y}+0\hat{z}<br />
f_1(u) and f_2(u) are functions of "u"
u=z-ct
i have the formula
\nabla \times \vec{E}=-\frac{db}{dt }
\nabla\times\vec{E}=|\begin{array}{ccc}<br /> \hat{x} & \hat{y} & \hat{z}\\<br /> \frac{{d}}{dx} & {\frac{{d}}{dy}} & \frac{{d}}{dz}|=\\<br /> f_{1}(z-ct) & f_{2}(z-ct) & 0\end{array}\hat{-x}\frac{{df_{2}}}{dz}-\hat{y}\frac{{df_{1}}}{dz}+\hat{z0}=-\frac{{d\overrightarrow{B}}}{dt}
i want to find B
so i need to integrate the left side by t
in order to get B
but f_1 f_2 are function of u
how to make a result
?
and then i need to show that B\bullet E=0
i can't get 0
u=z-ct
i have the formula
\nabla \times \vec{E}=-\frac{db}{dt }
\nabla\times\vec{E}=|\begin{array}{ccc}<br /> \hat{x} & \hat{y} & \hat{z}\\<br /> \frac{{d}}{dx} & {\frac{{d}}{dy}} & \frac{{d}}{dz}|=\\<br /> f_{1}(z-ct) & f_{2}(z-ct) & 0\end{array}\hat{-x}\frac{{df_{2}}}{dz}-\hat{y}\frac{{df_{1}}}{dz}+\hat{z0}=-\frac{{d\overrightarrow{B}}}{dt}
i want to find B
so i need to integrate the left side by t
in order to get B
but f_1 f_2 are function of u
how to make a result
?
and then i need to show that B\bullet E=0
i can't get 0