Matrices satisfying certain relations

neginf
Messages
56
Reaction score
0
How do you find matrices a,b,c satisfying
a=b*c*b^-1
b=c*a*c^-1
c=a*b*a^-1 ?
 
Physics news on Phys.org
If you know what's diagonalization, you can skip this.


For a to be diagonalizable, A=PDP^-1, where

P is an invertible matrix whose columns are A's eigenvector (order of these columns doesn't matter). C is a diagonal matrix that has all A's eigenvalues

So for a 3x3 diagonalizable matrix
D=
λ1 0 0
0 λ2 0
0 0 λ3

λ{1,2,3} are A's eigenvalues

P=
[v1 v2 v3]
v{1,2,3} are A's eigenvectors

From those 3 equations in your post you can see that a, b and c have to be all diagonal matrices.

Also, a has to have b's eigenvalues, b has to have c's eigenvalues and c has to have a's eigenvalues. And of course, a has to have c's eigenvectors... etc

Not sure how i would start solving this, but I hope this helps.
 
aija said:
From those 3 equations in your post you can see that a, b and c have to be all diagonal matrices.

Hi Aija, your statement above is just wrong. From those 3 equations, you should immeditately observe the solution a=b=c=M, where M is any invertible matrix, and the "problem" is to determine the remaining solutions, if any.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top