Matrix Derivative: Why is GRADIENT f(X) = C?

  • Thread starter Thread starter strokebow
  • Start date Start date
  • Tags Tags
    Derivative
strokebow
Messages
122
Reaction score
0
Hi,

A function: f(X) = C^T*X

Where, ^T is Transpose


Then my book tells me that GRADIENT f(X) = C


Why? Why is it not GRADIENT f(X) = C^T

Where, ^T is Transpose and GRADIENT is labla (opposite to delta)

Please help!

Thanks
 
Physics news on Phys.org
So
C= \begin{bmatrix}a \\ b \\ c\end{bmatrix}
C^T= \begin{bmatrix}a & b & c\end{bmatrix}
and
C^T X= \begin{bmatrix} a & b & c\end{bmatrix}\begin{bmatrix}x \\ y \\ c\end{bmatrix}= ax+ ay+ az

So
\nabla C^T X= \nabla (ax+ ay+ az)= \begin{bmatrix}a \\ b \\ c}\end{bmatrix}= C[/itex]
 
strokebow said:
Why? Why is it not GRADIENT f(X) = C^T
Check the definitions; that should make it obvious.

(I should point out that when paying attention to row vectors vs. column vectors, there are two different for defining the gradient, one being the transpose of the other)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top