carllacan
- 272
- 3
Homework Statement
Find the eigenfunctions of a particle in a infinite well and express the position operator in the basis of said functions.
Homework Equations
The Attempt at a Solution
Tell me if I'm right so far (the |E> are the eigenkets)
X_{ij}= \langle E_i \vert \hat{X} \vert E_j \rangle = \int dx \int dx' \langle E_i \vert x \rangle \langle x \vert \hat{X} \vert x'\rangle \langle x'\vert E_j \rangle
\int dx \int dx' \Psi_i^*(x) x\delta_{x, x'} \Psi_j(x') = \int dx \Psi_i^*(x) x \Psi_j(x)
Last edited: