boneill3
- 126
- 0
Homework Statement
Given the following matrix A find An
<br /> A=<br /> \[ \left( \begin{array}{ccc}<br /> a & -b \\<br /> b & a \\<br /> \end{array} \right)\] <br /> <br />
Homework Equations
I am using matrix multiplication and eventually mathematical induction
The Attempt at a Solution
First I find A2
<br /> A^2=<br /> \[ \left( \begin{array}{cc}<br /> a & -b \\<br /> b & a \\<br /> \end{array} \right) <br /> \times \left( \begin{array}{cc}<br /> a & -b \\<br /> b & a \\<br /> \end{array} \right)\]<br /> <br /> <br />
<br /> <br /> A^2=<br /> \[ \left( \begin{array}{cc}<br /> a^2-b^2 & -2ab \\<br /> 2ab & a^2-b^2 \\<br /> \end{array} \right) <br /> <br />
<br /> <br /> A^3=AA^2<br /> \[ \left( \begin{array}{cc}<br /> a & -b \\<br /> b & a \\<br /> \end{array} \right) <br /> \times \left( \begin{array}{cc}<br /> a^2-b^2 & -2ab \\<br /> 2ab & a^2-B^2 \\<br /> \end{array} \right)\]<br /> <br />
<br /> <br /> A^3=<br /> \[ \left( \begin{array}{cc}<br /> a(a^2-3b^2) & -b(3a^2-b^2) \\<br /> b(3a^2-b^2) & a(a^2-3b^2) \\<br /> \end{array} \right) <br /> <br />
<br /> <br /> A^4=AA^3<br /> \[ \left( \begin{array}{cc}<br /> a & -b \\<br /> b & a \\<br /> \end{array} \right) <br /> \times \left( \begin{array}{cc}<br /> a(a^2-3b^2) & -b(3a^2-b^2) \\<br /> b(3a^2-b^2) & a(a^2-3b^2) \\<br /> \end{array} \right) <br /> <br />
<br /> <br /> A^4=<br /> \[ \left( \begin{array}{cc}<br /> a^4-6a^2b^2+b^4 & -4a(a^2-b^2)b \\<br /> 4a(a^2-b^2)b & a^4-6a^2b^2+b^4 \\<br /> \end{array} \right) <br /> <br />
now I am trying to look for a patern so that I can use that to find An
I see that The diagonals are the same except that row 1 column 2 is negative.
for row 1 column 1 I think it might be something like
<br /> <br /> a^n (n-1+n)a^{n-2}<br /> <br />
and for row 2 column 1 I think it may be
<br /> <br /> na^{n-1}b-nab^{n-1}<br /> <br />
As they are the same diagonals I can use the same ones except for row 1 column 2 which I make negative.
If I could someone can see a pattern I would greatly appreciate it as Then I can try to prove it using induction.
regards
Brendan