Matrix of. Linear operator question

frowdow
Messages
3
Reaction score
0
I am trying to figure out what the matrix of this linear operator would be:
T:M →AMB where A, M, B are all 2X2 matrices with respect to the standard bases of a 2x2 matrix viz. e11, e12 e21 and e22. Any ideas? Il know it should be 2X8 matrix. I am trying to teach myself Abstract algebra using Artin's book and this is listed in the problem section in one of the chapters.

Thanks,
Frowdow
 
Physics news on Phys.org
Hey frowdow and welcome to the forums.

Just to clarify what are the domain and range (or codomain) of the actual mappings?
 
What are the images of the standard basis elements under T?
 
In general, one can find the matrix representing a given linear transformation, in a given basis, by applying the linear transformation to each basis "vector" in turn, writing the result as a linear combination of the basis vectors. The coefficients of the linear combination form the columns of the matrix.

e_{11}= \begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix}
If, say,
A= \begin{bmatrix}a_{11} & a_{12} \\ a_{21} & a_{22}\end{bmatrix}
and
B= \begin{bmatrix}b_{11} & b_{12} \\ b_{21} & b_{22}\end{bmatrix}
then
Ae_{11}B= \begin{bmatrix}a_{11} & a_{12} \\ a_{21} & a_{22}\end{bmatrix} \begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix}\begin{bmatrix}b_{11} & b_{12} \\ b_{21} & b_{22}\end{bmatrix}
= \begin{bmatrix}a_{11} & 0 \\ a_{21} & 0\end{bmatrix}\begin{bmatrix}b_{11} & b_{12} \\ b_{21} & b_{22}\end{bmatrix}= \begin{bmatrix}a_{11}b_{11} & a_{11}b_{21} \\ a_{21}b_{12} & a_{21}b_{22}\end{bmatrix}
= a_{11}b_{11}e_{11}+ a_{11}b_{21}e_{12}+ a_{21}b{21}e_{21}+ a_{21}b_{22}e_{22}
so the first 'column' consists of those four matrices. That is, the matrix is 2 by 2 but each entry is a 2 by 2 matrix so, expanded, it has 4 rows and 4 columns.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top