Matrix transform question about angle of rotation

AI Thread Summary
The discussion focuses on determining the axis and angle of rotation from a given matrix transformation. The initial calculations led to confusion regarding the perpendicular vector and the angle of rotation, with initial results suggesting a 90-degree rotation. However, through further analysis, participants identified that the correct perpendicular vector is (-1, 0, 1), leading to a 120-degree rotation. The importance of using the dot product instead of cross products was emphasized to resolve the calculations accurately. Ultimately, the correct approach clarified the transformation's properties and resolved the initial errors.
Gregg
Messages
452
Reaction score
0
\left(<br /> \begin{array}{ccc}<br /> 0 &amp; 1 &amp; 0 \\<br /> 0 &amp; 0 &amp; 1 \\<br /> 1 &amp; 0 &amp; 0<br /> \end{array}<br /> \right) represents a rotation.

(a) find the axis of the rotation

<br /> \left(<br /> \begin{array}{ccc}<br /> 0 &amp; 1 &amp; 0 \\<br /> 0 &amp; 0 &amp; 1 \\<br /> 1 &amp; 0 &amp; 0<br /> \end{array}<br /> \right)<br /> \left(<br /> \begin{array}{c}<br /> x \\<br /> y \\<br /> z<br /> \end{array}<br /> \right) = \left(<br /> \begin{array}{c}<br /> y \\<br /> z \\<br /> x<br /> \end{array}<br /> \right)<br />

<br /> \Rightarrow y=x=z<br />
(b) what is the angle of rotation

I found a perpendicular vector.

<br /> \left(<br /> \begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> 1<br /> \end{array}\right) \times \left(<br /> \begin{array}{c}<br /> -1 \\<br /> 1 \\<br /> 1<br /> \end{array}<br /> \right) = 0 \Rightarrow \theta = 90<br />

Transform the perpendicular vector.


\left(<br /> \begin{array}{ccc}<br /> 0 &amp; 1 &amp; 0 \\<br /> 0 &amp; 0 &amp; 1 \\<br /> 1 &amp; 0 &amp; 0<br /> \end{array}<br /> \right)\left(<br /> \begin{array}{c}<br /> -1 \\<br /> 1 \\<br /> 1<br /> \end{array}<br /> \right)<br /> = \left(<br /> \begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> -1<br /> \end{array}<br /> \right)

Product of the perpendicular and transformed perpendicular

<br /> \left(<br /> \begin{array}{c}<br /> -1 \\<br /> 1 \\<br /> 1<br /> \end{array}<br /> \right) \times<br /> \left(<br /> \begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> -1<br /> \end{array}<br /> \right) = -2i-2k

this does not indicate the 120 degree rotation that i need.

<br /> \left(<br /> \begin{array}{c}<br /> -1 \\<br /> 1 \\<br /> 1<br /> \end{array}<br /> \right)\left(<br /> \begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> -1<br /> \end{array}<br /> \right) = -1 = \sqrt{3}\cos\theta \Rightarrow \theta = 109

Is the perpendicular vector wrong? Am I trying to solve this correctly?
 
Physics news on Phys.org
The perpendicular vector is wrong. You want to solve (1,1,1).(a,b,c)=0 to find a perpendicular. The DOT product. Then you want to find the dot product of the perpendicular with the transformed perpendicular. No cross products necessary.
 
Last edited:
Dick said:
The perpendicular vector is wrong. You want to solve (1,1,1).(a,b,c)=0 to find a perpendicular. The DOT product. Then you want to find the dot product of the perpendicular with the transformed perpendicular. No cross products necessary.

<br /> \left(<br /> \begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> 1<br /> \end{array}<br /> \right).\left(<br /> \begin{array}{c}<br /> x \\<br /> y \\<br /> z<br /> \end{array}<br /> \right)=0

<br /> <br /> \Rightarrow x+y+z=0<br /> <br />


b=\left(<br /> \begin{array}{c}<br /> -1 \\<br /> 0 \\<br /> 1<br /> \end{array}<br /> \right)

<br /> <br /> \left(<br /> \begin{array}{ccc}<br /> 0 &amp; 1 &amp; 0 \\<br /> 0 &amp; 0 &amp; 1 \\<br /> 1 &amp; 0 &amp; 0<br /> \end{array}<br /> \right)\left(<br /> \begin{array}{c}<br /> -1 \\<br /> 0 \\<br /> 1<br /> \end{array}<br /> \right)=\left(<br /> \begin{array}{c}<br /> 0 \\<br /> 1 \\<br /> -1<br /> \end{array}<br /> \right)


<br /> \left(<br /> \begin{array}{c}<br /> -1 \\<br /> 0 \\<br /> 1<br /> \end{array}<br /> \right).\left(<br /> \begin{array}{c}<br /> 0 \\<br /> 1 \\<br /> -1<br /> \end{array}<br /> \right) = -1


-1 = \sqrt{2}\sqrt{2}\cos \theta

\Rightarrow \theta = 120
 
Last edited:
b=(-1,0,1) is a good perpendicular. But the transformed perpendicular isn't (1,0,-1) is it? There's another mistake in the dot product that makes me think you just copied it wrong.
 
Dick said:
b=(-1,0,1) is a good perpendicular. But the transformed perpendicular isn't (1,0,-1) is it? There's another mistake in the dot product that makes me think you just copied it wrong.

Ah, I see you fixed it. Much better.
 
Dick said:
Ah, I see you fixed it. Much better.

Yep made an error.Thanks for the help.
 

Similar threads

Replies
13
Views
2K
Replies
3
Views
3K
Replies
14
Views
3K
Replies
5
Views
2K
Replies
2
Views
1K
Replies
28
Views
2K
Replies
19
Views
2K
Back
Top