Gregg
- 452
- 0
\left(<br />
\begin{array}{ccc}<br />
0 & 1 & 0 \\<br />
0 & 0 & 1 \\<br />
1 & 0 & 0<br />
\end{array}<br />
\right) represents a rotation.
(a) find the axis of the rotation
<br /> \left(<br /> \begin{array}{ccc}<br /> 0 & 1 & 0 \\<br /> 0 & 0 & 1 \\<br /> 1 & 0 & 0<br /> \end{array}<br /> \right)<br /> \left(<br /> \begin{array}{c}<br /> x \\<br /> y \\<br /> z<br /> \end{array}<br /> \right) = \left(<br /> \begin{array}{c}<br /> y \\<br /> z \\<br /> x<br /> \end{array}<br /> \right)<br />
<br /> \Rightarrow y=x=z<br />
(b) what is the angle of rotation
I found a perpendicular vector.
<br /> \left(<br /> \begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> 1<br /> \end{array}\right) \times \left(<br /> \begin{array}{c}<br /> -1 \\<br /> 1 \\<br /> 1<br /> \end{array}<br /> \right) = 0 \Rightarrow \theta = 90<br />
Transform the perpendicular vector.
\left(<br /> \begin{array}{ccc}<br /> 0 & 1 & 0 \\<br /> 0 & 0 & 1 \\<br /> 1 & 0 & 0<br /> \end{array}<br /> \right)\left(<br /> \begin{array}{c}<br /> -1 \\<br /> 1 \\<br /> 1<br /> \end{array}<br /> \right)<br /> = \left(<br /> \begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> -1<br /> \end{array}<br /> \right)
Product of the perpendicular and transformed perpendicular
<br /> \left(<br /> \begin{array}{c}<br /> -1 \\<br /> 1 \\<br /> 1<br /> \end{array}<br /> \right) \times<br /> \left(<br /> \begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> -1<br /> \end{array}<br /> \right) = -2i-2k
this does not indicate the 120 degree rotation that i need.
<br /> \left(<br /> \begin{array}{c}<br /> -1 \\<br /> 1 \\<br /> 1<br /> \end{array}<br /> \right)\left(<br /> \begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> -1<br /> \end{array}<br /> \right) = -1 = \sqrt{3}\cos\theta \Rightarrow \theta = 109
Is the perpendicular vector wrong? Am I trying to solve this correctly?
(a) find the axis of the rotation
<br /> \left(<br /> \begin{array}{ccc}<br /> 0 & 1 & 0 \\<br /> 0 & 0 & 1 \\<br /> 1 & 0 & 0<br /> \end{array}<br /> \right)<br /> \left(<br /> \begin{array}{c}<br /> x \\<br /> y \\<br /> z<br /> \end{array}<br /> \right) = \left(<br /> \begin{array}{c}<br /> y \\<br /> z \\<br /> x<br /> \end{array}<br /> \right)<br />
<br /> \Rightarrow y=x=z<br />
(b) what is the angle of rotation
I found a perpendicular vector.
<br /> \left(<br /> \begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> 1<br /> \end{array}\right) \times \left(<br /> \begin{array}{c}<br /> -1 \\<br /> 1 \\<br /> 1<br /> \end{array}<br /> \right) = 0 \Rightarrow \theta = 90<br />
Transform the perpendicular vector.
\left(<br /> \begin{array}{ccc}<br /> 0 & 1 & 0 \\<br /> 0 & 0 & 1 \\<br /> 1 & 0 & 0<br /> \end{array}<br /> \right)\left(<br /> \begin{array}{c}<br /> -1 \\<br /> 1 \\<br /> 1<br /> \end{array}<br /> \right)<br /> = \left(<br /> \begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> -1<br /> \end{array}<br /> \right)
Product of the perpendicular and transformed perpendicular
<br /> \left(<br /> \begin{array}{c}<br /> -1 \\<br /> 1 \\<br /> 1<br /> \end{array}<br /> \right) \times<br /> \left(<br /> \begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> -1<br /> \end{array}<br /> \right) = -2i-2k
this does not indicate the 120 degree rotation that i need.
<br /> \left(<br /> \begin{array}{c}<br /> -1 \\<br /> 1 \\<br /> 1<br /> \end{array}<br /> \right)\left(<br /> \begin{array}{c}<br /> 1 \\<br /> 1 \\<br /> -1<br /> \end{array}<br /> \right) = -1 = \sqrt{3}\cos\theta \Rightarrow \theta = 109
Is the perpendicular vector wrong? Am I trying to solve this correctly?