Maupertuis's principle applied to gravity field

AI Thread Summary
The discussion revolves around the application of Maupertuis's principle to a particle in a gravitational field, where the user encounters difficulties in deriving the particle's behavior. The user attempts to apply Hamilton's principle but realizes that time should not be fixed in Maupertuis's principle, leading to confusion about the variations in energy and paths. The conversation highlights the distinction between different types of variations—where one keeps time fixed and the other allows it to vary—which impacts the conservation of energy in the derivation. The user acknowledges misunderstandings regarding the application of Lagrangian mechanics and the implications of energy conservation on the equations derived. Ultimately, the discussion emphasizes the need for clarity in the application of variational principles in mechanics.
zhouhao
Messages
35
Reaction score
0

Homework Statement


I learned how to deriving Maupertuis's principle from Hamilton's principle under conservative energy condition and feel this interesting.
But when trying to derive a particle's behavior in gravitivity field,stuck...
The direction of grativity is along ##x## axis,the particle is placed at ##(0,0,0)## as well as initial velocity equal to zero.At time ##t##,particle's position is ##(x(t),y(t),z(t))##.
Because Maupertuis's principle derived from Hamilton's principle here,it is reasonable to fix ##t=0## and ##t={\Delta}t## just like we did with Hamilton's principle.

Homework Equations


##\delta{x,y,z}(0)=\delta{x,y,z}(\Delta{t})=0##
##\delta{\int_0^{\Delta{t}}}p_x\dot{x}+p_y\dot{y}+p_z\dot{z}dt=m\delta{\int_0^{\Delta{t}}}{\dot{x}}^2+{\dot{y}}^2+{\dot{z}}^2dt=0 \ \ \ (1)##
Conservative energy condition:##mgx=\frac{1}{2}m({\dot{x}}^2+{\dot{y}}^2+{\dot{z}}^2)\ \ \ \ (2)##

The Attempt at a Solution


Substituite equation ##(2)## into ##(1)##,we got ##\delta\int_0^{\Delta{t}}2mgxdt=\int_0^{\Delta{t}}2mg\delta{x}dt=0## this means ##mg## should equal to zero,something wrong...
 
Physics news on Phys.org
TSny said:
In Maupertuis' principle, the time t corresponding to the final endpoint is not fixed. Time is not the integration variable in Maupertuis' principle.
https://en.wikipedia.org/wiki/Maupertuis'_principle#Comparison_with_Hamilton.27s_principle
I think in this way:
##W=-L+\sum\limits_ip_i{\dot{q}}_i##.Because for actual path, we have ##W=constant##, apply variation method to Lagrange function as well as constrain variation path with energy conservation condition:
##\delta\int_{t_1}^{t_2}Ldt=\delta\int_{t_1}^{t_2}L+Wdt=\delta\int_{t_1}^{t_2}\sum\limits_ip_i{\dot{q}}_idt=0##
so,under energy conservation condition:
##\delta\int_{t_1}^{t_2}\sum\limits_ip_i{\dot{q}}_idt=0## for actual path.(I apply this to grativity field above,although this is not rigorous Maupertuis' principle)

What's more,in De brogile's article:On the Theory of Quanta,which confusing me as well:
Maupertuis' principle was deduced in this way:##\delta\int_{t_1}^{t_2}\sum\limits_ip_i{\dot{q}}_idt=\delta\int_{A}^{B}\sum\limits_ip_id{q_i}=0## with a Footnote added to German translation:To make this proof rigorous,it is neccessary,as it well known,to also vary ##t_1##,##t_2##;but because of the time independence of the result,our argument is not fase.
 
zhouhao said:
I think in this way:
##W=-L+\sum\limits_ip_i{\dot{q}}_i##.Because for actual path, we have ##W=constant##, apply variation method to Lagrange function as well as constrain variation path with energy conservation condition:
##\delta\int_{t_1}^{t_2}Ldt=\delta\int_{t_1}^{t_2}L+Wdt=\delta\int_{t_1}^{t_2}\sum\limits_ip_i{\dot{q}}_idt=0##
This is done too quickly for me. On the far left you have ##\delta\int_{t_1}^{t_2}Ldt## which is an integral between two fixed times and the variation ##\delta## is for paths that generally have different energy ##W##. Then you equate this with ##\delta\int_{t_1}^{t_2}L+Wdt## in which you assume ##W## is constant. But when you do the variation at constant energy, the time ##t_2## will vary as you vary the path. So, I don't follow this line of argument.
so,under energy conservation condition:
##\delta\int_{t_1}^{t_2}\sum\limits_ip_i{\dot{q}}_idt=0## for actual path.
For Mauperuis' principle the variation ##\delta## is done at constant ##W##. But this is impossible to do if you keep ##t_1## and ##t_2## fixed during the variation. For a derivation of Maupertuis' principle from Hamilton's principle, see the Landau and Lifshitz Mechanics text, sections 43 and 44.
https://archive.org/stream/Mechanics3eLandauLifshitz/Mechanics 3e-Landau,Lifshitz#page/n163/mode/2up

What's more,in De brogile's article:On the Theory of Quanta,which confusing me as well:
Maupertuis' principle was deduced in this way:##\delta\int_{t_1}^{t_2}\sum\limits_ip_i{\dot{q}}_idt=\delta\int_{A}^{B}\sum\limits_ip_id{q_i}=0## with a Footnote added to German translation:To make this proof rigorous,it is neccessary,as it well known,to also vary ##t_1##,##t_2##;but because of the time independence of the result,our argument is not fase.
For me, this is too sketchy.
 
TSny said:
This is done too quickly for me. On the far left you have ##\delta\int_{t_1}^{t_2}Ldt## which is an integral between two fixed times and the variation ##\delta## is for paths that generally have different energy ##W##. Then you equate this with ##\delta\int_{t_1}^{t_2}L+Wdt## in which you assume ##W## is constant. But when you do the variation at constant energy, the time ##t_2## will vary as you vary the path. So, I don't follow this line of argument.
For Mauperuis' principle the variation ##\delta## is done at constant ##W##. But this is impossible to do if you keep ##t_1## and ##t_2## fixed during the variation. For a derivation of Maupertuis' principle from Hamilton's principle, see the Landau and Lifshitz Mechanics text, sections 43 and 44.
https://archive.org/stream/Mechanics3eLandauLifshitz/Mechanics 3e-Landau,Lifshitz#page/n163/mode/2up

For me, this is too sketchy.

You are right.I must misunderstand something.
Lagrangian function:##L=\frac{1}{2}m{\dot{q}_x}^2+\frac{1}{2}m{\dot{q}_y}^2+\frac{1}{2}m{\dot{q}_z}^2+mgq_x\ \ \ \ \ (1)##

Energy conservation condition:##mgq_x=\frac{1}{2}m{\dot{q}_x}^2+\frac{1}{2}m{\dot{q}_y}^2+\frac{1}{2}m{\dot{q}_z}^2\ \ \ (2.1)## and ##mg\delta{q_x}=m\dot{q}_x\delta{\dot{q}_x}+m\dot{q}_y\delta{\dot{q}_y}+m\dot{q}_z\delta{\dot{q}_z} \ \ \ \ (2.2)##

In my imagination,##\frac{\partial{L}}{\partial{q}_i}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{q}_i}}=0## make ##\delta\int_{t_1}^{t_2}Ldt=0##,This could be right for equation ##(1)## and equavalent to ##\ddot{q}_x=g,\ddot{q}_y=\ddot{q}_z=0##

Equation ##(2.2)## make ##\delta\int_{t_1}^{t_2}Wdt=0##
So ##\delta\int_{t_1}^{t_2}(L+W)dt=0##,then we have ##\delta\int_{t_1}^{t_2}\sum\limits_ip_i\dot{q}_idt=0##

But equation ##(2.1)## would make ##L=2mgq_x \ \ \ (3)##,
##\frac{\partial{L}}{\partial{q}_i}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{q}_i}}=0## is not right argument for equation (3) now.
It seems that energy conservation condition make ##\delta\int_{t_1}^{t_2}Ldt=\int_{t_1}^{t_2}2mg\delta{q}_xdt\ne0##.

If varying ##t_2##,the ##\delta\int_{t_1}^{t_2}Ldt## would equal zero under energy conservation condition?
 
Last edited:
zhouhao said:
You are right.I must misunderstand something.
Lagrangian function:##L=\frac{1}{2}m{\dot{q}_x}^2+\frac{1}{2}m{\dot{q}_y}^2+\frac{1}{2}m{\dot{q}_z}^2+mgq_x\ \ \ \ \ (1)##

Energy conservation condition:##mgq_x=\frac{1}{2}m{\dot{q}_x}^2+\frac{1}{2}m{\dot{q}_y}^2+\frac{1}{2}m{\dot{q}_z}^2\ \ \ (2.1)## and ##mg\delta{q_x}=m\dot{q}_x\delta{\dot{q}_x}+m\dot{q}_y\delta{\dot{q}_y}+m\dot{q}_z\delta{\dot{q}_z} \ \ \ \ (2.2)##

In my imagination,##\frac{\partial{L}}{\partial{q}_i}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{q}_i}}=0## make ##\delta\int_{t_1}^{t_2}Ldt=0##
Yes, this is correct if the ##\delta## symbol means to vary the paths such that the initial and final times (##t_1## and ##t_2##) are kept fixed for all paths. For this type of path variation, the energy ##W## generally will not be conserved (except for the true path).

Equation ##(2.2)## make ##\delta\int_{t_1}^{t_2}Wdt=0##
Here, you are assuming the energy ##W## remains constant for the varied paths. So, here you are using a different type of path variation than before. So, it might be good to use a different symbol ##\Delta## for this type of path variation. For this type of variation, you must allow the endpoint times ##t_1## and/or ##t_2## to vary as you vary the path.

[EDIT: So, ##\Delta\int_{t_1}^{t_2}Wdt \neq 0## if you are varying paths keeping ##W## constant. Rather, you can see that you would get ##\Delta\int_{t_1}^{t_2}Wdt = W \Delta t_2 - W \Delta t_1##, where ##\Delta t_2## is the variation in the upper time limit when varying the path. Similarly for ##\Delta t_1##.]

So ##\delta\int_{t_1}^{t_2}(L+W)dt=0##
Here it looks like you are not considering that the two types of variation are different. [EDIT: From what I wrote above, this equation does not follow.]

But equation ##(2.1)## would make ##L=2mgq_x \ \ \ (3)##,
##\frac{\partial{L}}{\partial{q}_i}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{q}_i}}=0## is not right argument for equation (3) now.
Lagrange's equations ##\frac{\partial{L}}{\partial{q}_i}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{q}_i}}=0## assume that you are expressing ##L## as a function of both the ##q_i## and the ##\dot{q}_i## according to ##L = T - V##.

It seems that energy conservation condition make ##\delta\int_{t_1}^{t_2}Ldt=\int_{t_1}^{t_2}2mg\delta{q}_xdt\ne0##
The variation of the paths on the left side of the equation are the ##\delta## type of variation where energy is not conserved for the varied paths. But the integral involving ##2mg## assumes energy is conserved in the variation.

A careful discussion of going from Hamilton's principle to Maupertuis' principle can be found in Goldstein's Mechanics, 3rd edition, starting on page 356. The text uses the ##\delta## versus ##\Delta## notation to distinguish the types of variation of path.
 
Last edited:
  • Like
Likes zhouhao
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top