Max Impulse on a pendulum

  • Thread starter Thread starter PakBosMuda
  • Start date Start date
  • Tags Tags
    Impulse Pendulum
AI Thread Summary
An impulse is applied to a pendulum, causing it to move in three dimensions, and the discussion focuses on determining the maximum impulse in the Z-axis to prevent the particle from hitting the roof. The energy of the particle is conserved throughout its motion, leading to the equation that relates initial and final velocities. The condition for avoiding contact with the roof requires the final velocity vector to lie in the XZ-plane, meaning the Y-component of the final velocity must be zero. Angular momentum is not conserved due to the torque created by the weight of the pendulum. The discussion highlights the need for additional equations to solve for the unknown variables of initial and final velocities.
PakBosMuda
Messages
1
Reaction score
0
TL;DR Summary: An impulse is given to the pendulum so that it moves in 3 dimensions. What equations apply throughout its motion?

A particle of mass ##m## is suspended from a string of length ##\ell##. The string is then deflected at an angle ## \theta ##, where the particle and string are in the XY-plane.
Capture.PNG


What is the maximum impulse in the Z-axis direction so that the particle does not hit the roof?
________________________________________________________________________
---------------------------------------------------------------------------

What I already know (CMIIW):

1. Throughout its motion, the energy of the particle is conserved:
$$E_{i} = E_{r}$$
$$PE_{i} + KE_{i} = PE_{r} + KE_{r}$$
$$-m.g. \ell . \cos \theta + \frac{1}{2} . m . v_{i}^2 = 0 + \frac{1}{2} . m . v_{r}^2$$
$$v_{i}^2 = 2g. \ell . \cos \theta + v_{r}^2$$

2. The condition for a particle not to hit the roof is that its final velocity vector (when on the roof) is in the XZ-plane ##\rightarrow \left( v_r \right) _y = 0##
1.jpg


3. Angular momentum is NOT CONSERVED, because the weight creates torque (as well as linear momentum).

There are 2 unknown variables : ##v_i## and ##v_r##, while the only equation I have is energy conservation. What am I missing?
 
Physics news on Phys.org
This is nothing but a spherical pendulum. Angular momentum in what you have lanelef the y-direction is conserved due to rotational symmetry about the y-axis.

Also, please do not use periods as multiplication in ##\LaTeX##. Leaving the multiplication operator is fine.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top