SUMMARY
The maximum number of phases in a binary mixture at equilibrium, according to the Gibbs phase rule, is determined using the formula F=C-P+2. For a binary mixture, where the number of components (C) is 2, the calculation yields a maximum of 4 phases (P=4) when the degrees of freedom (F) are set to 0. If one mole fraction is known, the system can only support 3 phases (P=3) with one degree of freedom remaining. Thus, the correct interpretation confirms that a binary mixture consists of 2 components.
PREREQUISITES
- Understanding of Gibbs phase rule
- Familiarity with the concept of phases in thermodynamics
- Knowledge of mole fractions in mixtures
- Basic algebra for solving equations
NEXT STEPS
- Study the implications of the Gibbs phase rule in multi-component systems
- Explore phase diagrams and their applications in chemical engineering
- Learn about the behavior of different phases in binary mixtures
- Investigate the role of temperature and pressure in phase equilibria
USEFUL FOR
Chemical engineers, thermodynamics students, and researchers working with phase equilibria in binary mixtures.