MHB Maximal Ideals - Exercise 5.1 (iii) Rotman AMA

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Exercise
Click For Summary
Exercise 5.1 (iii) from Rotman's Advanced Modern Algebra focuses on maximal ideals in the context of the ring F[x] over a field F. It is established that F[x] is a Euclidean domain, principal ideal domain, and unique factorization domain, leading to maximal ideals being generated by irreducible polynomials, which are also prime ideals. The discussion highlights that the Fundamental Theorem of Algebra simplifies part (iii) compared to part (ii). A distinction is made between the irreducibility of polynomials in different fields, noting that polynomials like x^2 + 1 are irreducible in R[x] but reducible in C[x] due to the algebraic properties of the fields. Understanding these concepts is crucial for solving the exercise effectively.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Joseph J. Rotman's book: Advanced Modern Algebra (AMA) and I am currently focused on Section 5.1 Prime Ideals and Maximal Ideals ...

I need some help with Exercise 5.1, Part (iii) ... ...Exercise 5.1 reads as follows:
View attachment 5943Can someone please help me to get a start on this exercise ...

Peter
 
Physics news on Phys.org
Hint:

over a field $F$, the ring $F[x]$ is a Euclidean domain (with Euclidean function $\text{deg}$), and thus a fortiori a principal ideal domain, and also a unique factorization domain.

So maximal ideals are generated by irreducible polynomials, which *are* the prime ideals as well, since irreducibles are prime and vice-versa.

Due to the Fundamental Theorem of Algebra, part (iii) is actually easier than part (ii).
 
Deveno said:
Hint:

over a field $F$, the ring $F[x]$ is a Euclidean domain (with Euclidean function $\text{deg}$), and thus a fortiori a principal ideal domain, and also a unique factorization domain.

So maximal ideals are generated by irreducible polynomials, which *are* the prime ideals as well, since irreducibles are prime and vice-versa.

Due to the Fundamental Theorem of Algebra, part (iii) is actually easier than part (ii).
Thanks for the help, Deveno ... appreciate it

Not quite sure what you are saying about Part (ii) though ... again we have a PID and so again, as you say, the maximal ideals are generated by irreducible polynomials, which *are* the prime ideals as well, since irreducibles are prime and vice-versa ... so answer seems the same ...

Can you clarify ...

Peter
 
$\Bbb C[x]$ has a lesser variety of irreducible polynomials that $\Bbb R[x]$ does. For example, $x^2 + 1 = (x + i)(x - i)$ is reducible in $\Bbb C[x]$, but is irreducible in $\Bbb R[x]$.

This is because $\Bbb C$ is algebraically closed, and $\Bbb R$ is not.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
2K