MHB Maximal Ideals - Exercise 5.1 (iii) Rotman AMA

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Exercise
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Joseph J. Rotman's book: Advanced Modern Algebra (AMA) and I am currently focused on Section 5.1 Prime Ideals and Maximal Ideals ...

I need some help with Exercise 5.1, Part (iii) ... ...Exercise 5.1 reads as follows:
View attachment 5943Can someone please help me to get a start on this exercise ...

Peter
 
Physics news on Phys.org
Hint:

over a field $F$, the ring $F[x]$ is a Euclidean domain (with Euclidean function $\text{deg}$), and thus a fortiori a principal ideal domain, and also a unique factorization domain.

So maximal ideals are generated by irreducible polynomials, which *are* the prime ideals as well, since irreducibles are prime and vice-versa.

Due to the Fundamental Theorem of Algebra, part (iii) is actually easier than part (ii).
 
Deveno said:
Hint:

over a field $F$, the ring $F[x]$ is a Euclidean domain (with Euclidean function $\text{deg}$), and thus a fortiori a principal ideal domain, and also a unique factorization domain.

So maximal ideals are generated by irreducible polynomials, which *are* the prime ideals as well, since irreducibles are prime and vice-versa.

Due to the Fundamental Theorem of Algebra, part (iii) is actually easier than part (ii).
Thanks for the help, Deveno ... appreciate it

Not quite sure what you are saying about Part (ii) though ... again we have a PID and so again, as you say, the maximal ideals are generated by irreducible polynomials, which *are* the prime ideals as well, since irreducibles are prime and vice-versa ... so answer seems the same ...

Can you clarify ...

Peter
 
$\Bbb C[x]$ has a lesser variety of irreducible polynomials that $\Bbb R[x]$ does. For example, $x^2 + 1 = (x + i)(x - i)$ is reducible in $\Bbb C[x]$, but is irreducible in $\Bbb R[x]$.

This is because $\Bbb C$ is algebraically closed, and $\Bbb R$ is not.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top