Is <(12)> a Maximal Subgroup of S_{3}?

  • Thread starter Thread starter moont14263
  • Start date Start date
  • Tags Tags
    Group Subgroup
moont14263
Messages
40
Reaction score
0
If G is a finite group and M is a maximal subgroup, H is a subgroup of G not contained in M. Then G=HM.

Is this true?
 
Physics news on Phys.org
No. Can you find a counterexample?
 
I tried, but I failed. Thanks.
 
What could go wrong??
 
S_{3}, <(12)> maximal, <(23)>, S_{3} not equal <(12)><(23)>
Thank you very much.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top