MHB Maximising the difference between multiple distributions

moyo
Messages
27
Reaction score
0
I am trying to come up with a parent loss function for the following neural network model. On top of that the algorithm for processing an image would also be helpful.

The quad-tree compression algorithm divides an image into ever increasingly small segments (squares) and stops in a particular region when all the pixels are the same value.

I would like a situation where I map a noise vector directly to an image. On top of that , the loss function will maximize the distance(KL) between the segments found using the quad-tree algorithm on the image.

This is involved because we have to alliteratively de-resolve slightly the image and find the new segments after that . Then to maximize the distance between all these segments at the same time. Perhaps with a bias towards the segments found at the highest resolution.

Another consideration is that this happens for each channel in the RGB channels.

Thankyou!
If this gets to a paper i will mention contributors :)
 
Physics news on Phys.org
So there will be a loss function for each image in the training set, and we process the image with the quadtree algorithm before in order to get its parameters.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Back
Top