Maximizing Sub-Rectangle Area in a Sequence of Partitions for a Unit Square

Nicolaus
Messages
73
Reaction score
0

Homework Statement


Let R be the unit square such that R= [0,1] x [0,1]
Find a sequence of partitions of R such that the limit as k ->inf of the area of the largest sub-rectangle of the partition (where k is number of partitions) goes to zero but the mesh size does not go to zero.
Depicting the first couple of partitions in the sequence graphically suffices.

Homework Equations

The Attempt at a Solution


I know how to show the converse, i.e. showing that if the mesh size goes to zero, then the area of the largest sub rectangle goes to zero. In this case, the mesh size is the Euclidean norm of the i'th sub-rectangle: if I divide the square into 4 unequal sub-rectangles, then: 0 < 4(maxA(R)) < 4mesh^2 (i.e. Euclidean Norm squared) so by taking the limit of the mesh, and if it tends to zero, then the max area will tend to zero by squeeze. I'm having trouble starting the aforementioned problem, though.
 
Physics news on Phys.org
Nicolaus said:

Homework Statement


Let R be the unit square such that R= [0,1] x [0,1]
Find a sequence of partitions of R such that the limit as k ->inf of the area of the largest sub-rectangle of the partition (where k is number of partitions) goes to zero but the mesh size does not go to zero.
Depicting the first couple of partitions in the sequence graphically suffices.

Homework Equations

The Attempt at a Solution


I know how to show the converse, i.e. showing that if the mesh size goes to zero, then the area of the largest sub rectangle goes to zero. In this case, the mesh size is the Euclidean norm of the i'th sub-rectangle: if I divide the square into 4 unequal sub-rectangles, then: 0 < 4(maxA(R)) < 4mesh^2 (i.e. Euclidean Norm squared) so by taking the limit of the mesh, and if it tends to zero, then the max area will tend to zero by squeeze. I'm having trouble starting the aforementioned problem, though.

Think about long skinny rectangles.
 
Thanks
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top