bossler
- 8
- 0
Problem- I do not have a picture of the example so I will do my best to describe it.
Water is in a large tank of depth H. On the side of tank, on the very bottom, an open ended pipe of length L leaves the tank at angle theta. The question asks to determine the maximum height of the water (h) leaving the pipe as a function of angle theta.
I know that velocity = the square root of (2gH), so using SI units, my velocity at the very bottom of the tank would be the square root of 19.62H. However the exit to the pipe is higher than the bottom of the tank, so would my velocity leaving the pipe be sqrt (19.62(H-L sin theta))? If this is the case, would the velocity of water leaving the pipe be (sqrt(19.62(H-L sin theta))) sin theta + L sin theta?
I hope my description of the example is clear enough. Any suggestions/help is always appreciated.
Thanks
Water is in a large tank of depth H. On the side of tank, on the very bottom, an open ended pipe of length L leaves the tank at angle theta. The question asks to determine the maximum height of the water (h) leaving the pipe as a function of angle theta.
I know that velocity = the square root of (2gH), so using SI units, my velocity at the very bottom of the tank would be the square root of 19.62H. However the exit to the pipe is higher than the bottom of the tank, so would my velocity leaving the pipe be sqrt (19.62(H-L sin theta))? If this is the case, would the velocity of water leaving the pipe be (sqrt(19.62(H-L sin theta))) sin theta + L sin theta?
I hope my description of the example is clear enough. Any suggestions/help is always appreciated.
Thanks