Maximum Positive Coordinate Reached by a Particle

AI Thread Summary
The discussion focuses on determining the maximum positive coordinate and velocity of a particle described by the function x(t) = 12t² - 2t³. To find the maximum coordinate, the velocity function v(t) = 24t - 6t² is set to zero, yielding a maximum position of 64m at t = 4s. The confusion arises around why the maximum position occurs at v = 0 and why maximum velocity occurs at a = 0, which relates to critical points in calculus where the first derivative (velocity) is zero at local maxima or minima. The conversation also explores the implications of interpreting the function in different contexts, such as projectile motion versus other scenarios like a marble rolling on a surface. Ultimately, the key takeaway is that the maximum position of a function is reached when its velocity is zero, highlighting the relationship between position, velocity, and acceleration.
Satonam
Messages
38
Reaction score
1
Missing template due to originally being posted in different forum.
The problem gives you a function describing the position of a particle moving along an x axis:
x(t) = 12t2 - 2t3

With this function, one must determine the maximum positive coordinate reached by a particle and the maximum positive velocity. The first step to the problem is to take the derivative of the original function to obtain
v(t) = 24t - 6t2

And then again to obtain
a(t) = 24 - 12t

Where x is position, t is time, v is velocity and a is acceleration.

According to the solution manual for this specific problem, maximum positive coordinate reached by the particle requires v = 0, by which we then solve for t which turns out to be t = 4s. We then plug in the value for t in the original function x(t) and yield xmax = 64m. Finding maximum positive velocity is similar, whereas
a = 0.

What I don't understand is why the maximum positive coordinate for x is at v = 0, likewise for maximum velocity at a = 0.

I understand, mathematically, that this has to do with finding the min and max of a function by finding its critical points. In the function x(t) the term -2t3 is growing faster than 12t2, therefore, eventually, x(t) will become negative.

Graphically.
At t = 0 a particle following this path is x = 0, v = 0 and a = 24.
The particle ascends gradually in the x(t) graph.
At t = 2, a = 0 so v must be constant (v = 24) and x is midway between its starting point and its highest point. In a v(t) graph, this point is the peak (vertex) of a downwards parabola. At this same point, the down-sloping line of an a(t) graph intercepts with the t-axis.
At t = 4, x(t) reaches the peak of its trajectory. v = 0 so the v(t) graph intercepts the t-axis and a = -24 (shouldn't a = 0 if v = 0?)
At t = 6, the particle reaches the ground so x = 0 and -just before landing- v = -72, and a = -48

Of course, we are ignoring factors light the drag force caused by air. When the projectile is in the air, the only force acting upon it is g and so its velocity gradually decreases until it reaches its highest point; therefore, with classical physics, we can conclude that the maximum position of a particle in this trajectory is at v = 0 because at this point, the projectile begins to descend back towards the ground...

Actually, in the process of writing this I just realized that I interpreted this the wrong way. I'm assuming the particle is a projectile (the shape of the graph confused me as it rises and falls, which gave me said impression), however it is moving on the x axis; than again, this may be fixed by substituting x for y. It is then that I must pose the question, what if the particle is actually a marble rolling on a surface? Then, instead of considering gravity, we must consider friction, correct? With that said, friction would not explain why the marble accelerates in the opposite direction. In that case, going back to gravity and ignoring friction, we must assume that the marble is actually rolling up a hill and then back down.

To be honest, at this point, I question whether I'm just spouting gibberish. I'm sorry if my ideas seem to be all over the place, I'm trying to portray my thought process in an orderly manner.

Moving on, I think I've convinced myself why x has reached its highest point at v = 0 whether it represents a vertical or horizontal path. But what if the function x(t) is not describing motion, but is actually a marketing formula where x is a product and t is the price? In this case, we ask ourselves what price yields maximum product sold? I'm sorry, I don't know much about marketing so this entire set up might not make sense. Perhaps my error is trying to adjust this formula to other hypothetical scenarios where it might apply?

I guess, to make my question less ambiguous, is x maximized at v = 0 regardless of the function or the event under observation? This idea sounds wrong just saying it, I think, but my ideas are so convoluted that I can't think straight anymore. Again, sorry for this mess. I might be asking the wrong question to begin with.
 
Physics news on Phys.org
"v" changes sign at its max/min.
 
Satonam said:
I guess, to make my question less ambiguous, is x maximized at v = 0 regardless of the function or the event under observation? This idea sounds wrong just saying it, I think, but my ideas are so convoluted that I can't think straight anymore. Again, sorry for this mess. I might be asking the wrong question to begin with.
You get the critical points of a function F(t) where the derivatives dF/dt are zero. You can visualize it as the the tangent to the function. The tangent line is horizontal at the maximum and at the minimum of the function.
The velocity is defined as time derivative of displacement, v=dx/dt. The acceleration is defined as a the time derivative of the velocity, a=dv/dt. The acceleration is zero at the critical point(s) of the v(t) function, and the velocity is zero at the critical point(s) of the x(t) function.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top