MCNP5 error: Source distribution in 2 volumetric cells (help please)

AI Thread Summary
The discussion revolves around simulating source distribution in two volumetric cells using MCNPprimer Script, specifically for a photon source of 356 keV. The user encountered a fatal error related to the dependent distribution length and warnings about unused source distributions. After sharing their code, a suggestion was made to correct a line from "DS8 9 10" to "DS8 S 9 10." This adjustment resolved the user's issue, allowing them to proceed with their simulation. The conversation highlights the importance of precise syntax in coding for successful simulations.
DePaco
Messages
14
Reaction score
2
Hello,
can you help me? In my model, I have to simulate source distribution in two volumetric cells (30 and 31). For example, with a photon source of 356 keV, I have to simulate the distribution according 0.2 (20% in source 30: thyroid without nodule) and 0.8 (80% in source 31: nodule). I use MCNPprimer Script (page 14-15) but I have an error.
Fatal Error :
fatal error. dependent distribution 8 is the wrong length.
warning. source distribution 9 is not used in this problem.
warning. source distribution 10 is not used in this problem.
My code is :
C Cellules
30 50 -1.00 (-1 3 19):(-2 3):(-4 3 -6 5 -7 1 2) imp:p=1 $lobe eau ND
c 31 50 -1.00 -19 3 imp:p=1 $Nodule eau
31 50 -1.00 -19 3 #(-4 3 -6 5 -7 1 2) imp:p=1 $Nodule eau
c 31 55 -3.67 -19 3 #(-4 3 -6 5 -7 1 2) imp:p=1 $Nodule NaI
32 51 -1.19 -8 -9 #((-1 3):(-2 3):(-4 3 -6 5 -7 1 2):(-19 3)) imp:p=1 $cou PMMA
33 52 -2.7 -10 11 imp:p=1 $Cyl Alu
34 53 -1.2e-3 (-11 -13):-16:-18 imp:p=1 $Cyl int air
35 51 -1.19 -11 13 -14 12 imp:p=1 $PMMA
36 54 -3.58 -11 14 imp:p=1 $MgO
37 55 -3.67 -12 imp:p=1 $Cyl NaI
38 56 -11.35 -15 16 imp:p=1 $Cyl Pb
39 57 -7.87 -17 18 imp:p=1 $Inox (Fer)
40 53 -1.2e-3 -20 #(-8 -9) 10 15 17 imp:p=1 $monde air
80 0 20 imp:p=0 $vide

C Structures
c Thyroide
1 SQ 0.982 0.982 0.171 0 0 0 -1 1.4122 0 0 $lobe droit
2 SQ 0.982 0.982 0.171 0 0 0 -1 -1.4122 0 0 $lobe gauche
3 CZ 1.009 $Cyl Trachee
4 CZ 1.412 $Cyl Isthme
5 PZ -2.017 $Plan Isthme bas
6 PZ 0 $Plan Isthme haut
7 PY 0 $Plan Trachee
8 RCC 0 3.528 -3 0 0 6 5.4 $Cyl cou
9 PY 1.412 $Plan cou
c Detecteur NaI
10 41 RCC 0 0 0 0 3 0 2.85 $Cylindre ext
11 41 RCC 0 0.04 0 0 2.92 0 2.81 $Cylindre int
12 41 RCC 0 0.18 0 0 2.54 0 2.54 $NaI
13 41 PY 0.18 $Plan NaI bas
14 41 PY 2.72 $Plan NaI haut
15 41 RCC 0 3 0 0 1 0 2.85 $Cyl Pb ext
16 41 RCC 0 3 0 0 1 0 2.35 $Cyl Pb int
17 41 RCC 0 4 0 0 0.32 0 2.85 $Cyl Inox ext
18 41 RCC 0 4 0 0 0.32 0 2.64 $Cyl Inox int
c Taille des nodules
19 S 1.77 0 0 0.2 $Nodule lobe droit D=0.4 cm
20 SO 80 $monde

C Reste
c deplacement nodule
c tr42 1.4122 0 0
c deplacement detecteur
tr41 0 -6.192 0 $DDC=0cm
c tr41 0 -21.192 0 $DDC=15cm
c tr41 0 -36.192 0 $DDC=30cm
mode p
c eau
m50 1000 2
8000 1
c PMMA
m51 1000 -0.080541
6000 -0.599846
8000 -0.319613
c Aluminium
m52 13000 1
c Air
m53 6000 -0.000124
7000 -0.755268
8000 -0.231781
18000 -0.012827 $ air
c MgO
m54 12000 -0.603036
8000 -0.396964
c NaI
m55 11000 -0.153373
53000 -0.846627
c Plomb
m56 82000 1
c Inox (Fer)
m57 26000 1
c Fixation nodulaire et tissus sains
c SDEF PAR=2 ERG=0.356 CEL d1 AXS=0 0 1 POS 0 0 0 RAD d2 EXT d5
c eff=0.001
c SI1 30 31
c SP1 D 0.2 0.8
c SI2 0 2.5
c SI5 -2.5 2.5
c Definition des paramètres uptake
SDEF PAR=2 CEL=d1 POS=FCEL d2 AXS=0 0 1 RAD=FCEL d5 EXT=FCEL d8 ERG=FCEL d20
c Choix des cellules et leur uptake
SI1 L 30 31
SP1 0.2 0.8
c Position centrale du cylindre englobant chaque source
DS2 S 3 4
SI3 L 0 0 0
SP3 1
SI4 L 1.77 0 0
SP4 1
c Rayon du cylindre englobant chaque source
DS5 S 6 7
SI6 0 2.5
SP6 -21 1
SI7 0 0.5
SP7 -21 1
c Limite inférieure et supérieure de chaque cylindre
DS8 9 10
SI9 -2.5 2.5
SP9 -21 0
SI10 -0.5 0.5
SP10 -21 0
c Energie des photons de chaque source
DS20 S 21 22
SI21 L 0.356
SP21 D 1
SI22 L 0.356
SP22 D 1
F8:p 37
e8 0.0 1e-4 0.320 100i 0.370
nps 1e6Thank you for your help.
 
Engineering news on Phys.org
Hi,
You write DS8 9 10
Instead of DS8 S 9 10
PSR
 
  • Like
Likes DePaco
Thank you. I have solved my problem.
 
Hello everyone, I am currently working on a burnup calculation for a fuel assembly with repeated geometric structures using MCNP6. I have defined two materials (Material 1 and Material 2) which are actually the same material but located in different positions. However, after running the calculation with the BURN card, I am encountering an issue where all burnup information(power fraction(Initial input is 1,but output file is 0), burnup, mass, etc.) for Material 2 is zero, while Material 1...
Hi everyone, I'm a complete beginner with MCNP and trying to learn how to perform burnup calculations. Right now, I'm feeling a bit lost and not sure where to start. I found the OECD-NEA Burnup Credit Calculational Criticality Benchmark (Phase I-B) and was wondering if anyone has worked through this specific benchmark using MCNP6? If so, would you be willing to share your MCNP input file for it? Seeing an actual working example would be incredibly helpful for my learning. I'd be really...
Back
Top