A Cheeky Llama
Homework Statement
If ##P(x)\propto e^{x^2/2\sigma^2}##, show that the average ##\langle x^2\rangle = \sigma^2##.
Homework Equations
##\langle x\rangle = \frac {\int xP(x) \, dx} {\int P(x) \, dx}##
The Attempt at a Solution
##I = \int x^2e^{x^2/2\sigma^2} \, dx = \int (-\sigma^2x)(\frac {-x} {\sigma^2} e^{-x^2/2\sigma^2}) \, dx##
let ##u = -\sigma^2x##, let ##dv = \frac {-x} {\sigma^2} e^{-x^2/2\sigma^2}##
##I = -\sigma^2xe^{-x^2/2\sigma^2} + \sigma^2\int e^{-x^2/2\sigma^2} \, dx##
Therefore ##\langle x^2 \rangle = \frac {-\sigma^2xe^{-x^2/2\sigma^2} + \sigma^2\int e^{-x^2/2\sigma^2} \, dx} {\int e^{-x^2/2\sigma^2} \, dx}##
##= \sigma^2 - \frac {\sigma^2xe^{-x^2/2\sigma^2}} {\int e^{-x^2/2\sigma^2} \, dx}##
At this point I'm stuck and not sure where to go. If I am to show the above, then the right hand term must equal zero, but I cannot see how this can be.
This question is just part of my individual study (from A Cavendish Quantum Mechanics Primer), I originally moved on from the question when I couldn't get it, but have kept trying to come back to it and have gotten no where.