Mean value of energy <E> for a QM state?

helpmeprepls
Messages
4
Reaction score
0

Homework Statement


If the system is in a state

|ψ> = 1/sqrt(6) |v1> + 1/sqrt(3) |v2> - i/sqrt(2) |v3>

with Hamiltonian satisfying H|vj> = (2-j)a|vj>

Find the mean value of energy <E> and the root mean square deviation √(<E2> - <E>2 ) that would result from making a number of measurements of the energy of the system in state |ψ>

Homework Equations


<E> = <ψ|E|ψ>

for a free particle E = p2 / 2m

The Attempt at a Solution


[/B]
To find the mean value of Energy <E> is it just eigenvalues (a, 0 -a) multiplied by the probability of it being in the corresponding state P = (1/6, 1/3, 1/2)?

= a/6 - a/2 = -2a/6.
For E2 then do you just have the same, but the eigenvalues squared multiplied by the probabilities?
 
Physics news on Phys.org
except divide the energy by two? as its a mean, so it would be -a/6 ?
 
Why divide by 2 ? What would be the mean value for the identity operator 1 ?
 
BvU said:
Why divide by 2 ? What would be the mean value for the identity operator 1 ?
1, so do you just find the mean of the eigenvalues? So 0...
 
For the identity operator you get ##\ {1\over 6} + {1\over 3} + {(-i^*)(-i)\over 2} = 1 \ ##. No dividing by 2. The state is properly normalized.

For <H> you get ##\ {1\over 6} (a) + {1\over 3} (0) + {(-i^*)(-i)\over 2} (-a) = {\displaystyle -a\over 3} \ ## as you did. No dividing by 2 either.

So for <H2> ...
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top