Measurement for a particle in a box

adjklx
Messages
11
Reaction score
0
It is known that a particle in a one dimensional box with walls at (-a/2, +a/2) has energy probabilities:
P(E1) = 1/3, P(E2) = 1/3, P(E,3) = 1/3, P(En) = 0 for all other n. If the parity of the state is measured and +1 is found, what can you say about the value of the measurement of E sometime later?




The eigenstates of the particle in a box are root(2/a) sin(n*pi*x/a) for even n and root(2/a) cos(n*pi*x/a) for odd n.



So I wrote down the initial state as a linear combination of eigenstates of the Hamilitonian corresponding to n = 1, 2, 3 each with coefficient 1/root3. Now, since the measured parity was +1, the wavefunciton must be in an eigenstate of the parity operator with eigenvalue +1. The parity operator and Hamiltonian commute for this system so I can use the Hamiltonian eigenstates. My question is, does the wavefunction now have to be in a linear combination of eigenstates for n = 1 and n = 3 since those were the original even eigenfunctions used in the expression of the wavefunction? Or is it in a linear combination of all even eigenstates of the Hamiltonian?
 
Physics news on Phys.org
If |psi> is the state before the parity measurement, then immediately after the parity measurement, the state of system is the (normalized) projection of |psi> into the subspace of all even parity states.

What is this projection?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top