Measuring Spacing with Shortcut Technique: Is Uniformity Achieved?

  • Context: Undergrad 
  • Thread starter Thread starter erobz
  • Start date Start date
  • Tags Tags
    Measuring Uniformity
Click For Summary

Discussion Overview

The discussion revolves around the effectiveness of a "shortcut" technique for measuring uniform spacing using an elastic band, particularly in the context of spacing balusters for porch railings. Participants explore whether this method yields uniformly spaced increments after stretching the band, considering both theoretical and practical implications.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Experimental/applied

Main Points Raised

  • One participant presents a mathematical approach to demonstrate that if the initial increments are uniform, the final increments after stretching the band will also be uniform, assuming uniform stretching.
  • Another participant argues that the uniformity of stretching depends on the material properties of the band, suggesting that real bands may not stretch uniformly, which could lead to non-uniform spacing.
  • A similar viewpoint is reiterated by another participant, emphasizing that while the mathematical model assumes uniform stretching, practical considerations may lead to deviations in real-world applications.
  • One participant reflects on their initial overcomplication of the problem, acknowledging that their earlier thoughts were influenced by a different conceptual scenario involving an ant on a stretching rubber band.
  • Another participant mentions that using multiple rubber bands from the same pack can help achieve more consistent spacing without the need for markings, questioning the necessity of precision in home improvement projects.

Areas of Agreement / Disagreement

Participants express differing views on the uniformity of the stretching process. While some agree on the theoretical basis for uniform increments, others contend that practical factors may lead to non-uniform results, indicating that the discussion remains unresolved regarding the effectiveness of the technique in practice.

Contextual Notes

Participants note that the assumptions about uniform stretching may not hold true for all materials, and the discussion includes considerations of how real-world applications may deviate from theoretical models. The limitations of the mathematical approach and the dependence on material properties are acknowledged.

Who May Find This Useful

This discussion may be of interest to individuals involved in home improvement, DIY projects, or those curious about the practical applications of mathematical modeling in everyday tasks.

erobz
Gold Member
Messages
4,459
Reaction score
1,846
I saw on a home improvement show some "shortcut" for measuring out a series of fixed measurements over a distance (it pertained to spacing baluster for porch railing). The contractor places a series of lines of some small incremental distance (1 or 2 inches say) on an elastic fabric band, and the stretches the band until the desired spacing is achieved on the last post. I thought, "is that going to yield increments of uniform spacing over the entire length or is this just a close enough technique?"

So, I start with:

$$ \frac{x}{l} = \frac{x + dx}{ l + dl} $$

Where ## x ## is a marked position on the band, and ## l ## is the length of the band.

This yields

$$ dx = \frac{x}{l}dl \tag{1} $$

I am going to say that ##x = fl ##, where ##0 \leq f \leq 1##

From (1)

$$ \begin{align} \int_{{{x_a}}}^{ {x_a}'} dx &= f_a \int_{L_o}^{L} dl \tag*{} \\ \quad \tag*{} \\ {x_a'} &= f_a \Delta l + x_a \tag*{} \end{align}$$

## {x_a}' ## is the new coordinate of ## x_a ## after the band undergoes a change of length ## \Delta l = L - L_o ##

So next imagine ## x_2 - x_1## defines some increment. After a stretch of ## \Delta l ## the new coordinates of the markings are given by:

$$ {x_2}' - {x_1}' = \left( f_2 - f_1 \right) \Delta l + x_2 - x_1 = \left( f_2 - f_1 \right) \left( \Delta l + L_o \right) $$

Similarly let ## x_4 - x_3## define an increment at some other location on the band.

$$ {x_4}' - {x_3}' = \left( f_4 - f_3 \right) \Delta l + x_4 - x_3 = \left( f_4 - f_3 \right) \left( \Delta l + L_o \right) $$

We can now see given some arbitrary ## \Delta l ## as long as ## f_4 - f_3 = f_2 - f_1## (that is to say the increments initially made are of uniform length), we have that:

$$ {x_4}' - {x_3}' = {x_2}' - {x_1}' $$

and the "shortcut" the contractor used should, indeed create increments of uniform length on the band after stretched to its new length.

I think I have it right? This ignores the width of the marks (assumed very thin), and length contraction in the band in orthogonal directions.
 
Last edited:
Physics news on Phys.org
I think you are overcomplicating things. The assumption at work here is that if you stretch the band by pulling its ends farther apart, the band will stretch uniformly. It is expressed mathematically with your equation (1) but wether the band actually does that is a property of the band material.

Say you subdivide the length ##l## of the unstrectched band into ##N## equal increments separated by ##\delta## so that ##l=N\delta##. Under the assumption, if you stretch the band to a new length, you will still have ##N## subdivisions equally separated. It's like taking a photograph of a 12" ruler. If you print it enlarged by a factor of 1.5, the one-inch markings will be equally spaced 1.5'' apart.

However, If the band stretches non-uniformly, say slightly more near the ends than in the middle, the marks will not be equally separated. My sense is that a real band (I have never used one) will not stretch uniformly and that this method is close enough. How close is close enough for a real band cannot be derived mathematically but can be investigated experimentally.
 
  • Like
Likes   Reactions: erobz
kuruman said:
I think you are overcomplicating things. The assumption at work here is that if you stretch the band by pulling its ends farther apart, the band will stretch uniformly. It is expressed mathematically with your equation (1) but wether the band actually does that is a property of the band material.

Say you subdivide the length ##l## of the unstrectched band into ##N## equal increments separated by ##\delta## so that ##l=N\delta##. Under the assumption, if you stretch the band to a new length, you will still have ##N## subdivisions equally separated. It's like taking a photograph of a 12" ruler. If you print it enlarged by a factor of 1.5, the one-inch markings will be equally spaced 1.5'' apart.

However, If the band stretches non-uniformly, say slightly more near the ends than in the middle, the marks will not be equally separated. My sense is that a real band (I have never used one) will not stretch uniformly and that this method is close enough. How close is close enough for a real band cannot be derived mathematically but can be investigated experimentally.
Well, I overcomplicated it because I under thought it. What you say makes perfect sense (and seems obvious) now that you've pointed it out!

I was driven that way a because I remembered from the classic "ant on a stretching rubber band" that the absolute velocity of the ant depends on where the ant is on the rubber band. So, I was initially thinking that if each point on the stretching band had a different velocity, then the distances between two points, at different points would be different (I obviously proved that intuition false). I'm guilty of being lazy. I knew how to get to that point, so I just went with what I know, instead of thinking originally about this particular problem.
 
  • Like
Likes   Reactions: kuruman
kuruman said:
My sense is that a real band (I have never used one) will not stretch uniformly and that this method is close enough.
Most of the variation is eliminated when you chain many rubber bands together from the same pack. That also eliminates the need to mark the band as the knots are equally spaced.
How good is good enough in home improvement? If it looks right, it is correct.
 

Similar threads

  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
6K
Replies
14
Views
3K
Replies
24
Views
4K
Replies
6
Views
3K
  • · Replies 55 ·
2
Replies
55
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K