Mechanical Principles Dynamics of Rotating Systems

AI Thread Summary
The discussion focuses on solving a mechanical dynamics problem involving a rotating system. Key calculations include determining the velocity of the piston (VBO), the angular velocity of link AB (ωAB), and the acceleration of point B relative to A (aBA) at an angle of θ = 45°. Additionally, it addresses finding the angle θ when the velocity of point B is zero and when the angular velocity of link AB is at its maximum, as well as calculating the maximum angular velocity of link AB. Participants suggest using vector definitions and resolving velocities into components to simplify the problem-solving process. The conversation emphasizes the importance of understanding the relationships between the components of the system.
mally baringon
Messages
2
Reaction score
0
1. For the mechanism shown in FIGURE 1 determine for the angle
θ = 45°:

(i) the velocity of the piston relative to the fixed point O (VBO)
(ii) the angular velocity of AB about point A (i.e. ωAB)
(iii) the acceleration of point B relative to A (aBA).

(b) Determine the value of the angle θ (measured from vertical) when:
(i) the velocity of point B = 0
(ii) the angular velocity of link AB a maximum.

(c) What is the maximum angular velocity of link AB?
upload_2017-5-31_15-50-21.png

Homework Equations


Vao = Loa x ωoa

The Attempt at a Solution


Vao = Loa x ωoa = 0.005 x 10pi 0.1570

velocity triangle cosθ = Vbo/Vao

VBo =cos45 x Nao = 0.707 x 1.5708 = 1.1107 m/s^-1


I just have no idea where to start or what numbers to use where
 

Attachments

  • upload_2017-5-31_15-50-2.png
    upload_2017-5-31_15-50-2.png
    3.6 KB · Views: 565
Physics news on Phys.org
Try to define de displacement of point B as a function of de alngle theta. You can define vectors from origin O to help you.
 
  • Like
Likes berkeman
Diegor said:
Try to define de displacement of point B as a function of de alngle theta. You can define vectors from origin O to help you.
That would certainly work, but is unnecessarily complicated for the specific questions asked.
@mally baringon, if you resolve the instantaneous velocities of A and B into components along the rod and normal to the rod, what relationship must exist between them?
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Replies
8
Views
2K
Replies
18
Views
4K
Replies
3
Views
2K
Replies
6
Views
3K
Replies
26
Views
8K
Back
Top