Understanding the Chain Rule in Mechanics: Solving for Acceleration and Force

AI Thread Summary
The discussion focuses on applying the chain rule to find acceleration and force for a particle moving with a speed defined by v(x) = α / x. The user initially misunderstands the need for the chain rule, believing they can directly differentiate with respect to time. Clarification reveals that since x is a function of time, the chain rule must be used to correctly derive acceleration as a = (dv/dx)(dx/dt). The resulting force is confirmed to be F(x) = -m α^2 / x^3, aligning with the given answer. The thread concludes with a note about the forum's functionality regarding marking discussions as resolved.
AshesToFeonix
Messages
11
Reaction score
0

Homework Statement




6. A particle of mass m moves along a frictionless, horizontal plane with a speed given by

v(x) = α / x. Where x is the distance of the object from the origin and α is a constant.

Working with F = ma, we want to get the acceleration. You have v = v(x). You want a = dv/dt. Find (dv/dx)(dx/dt). Find the force F(x) to which the particle is subjected to.




The Attempt at a Solution



I guess my problem is I don't understand why I need to use chain rule since v = dx/dt. I thought I could take the derivative in respect to t on both sides, and get dv/dt = - α / x^2, then multiply both sides by m to get the force equation.

the answer is given, -m α^2/ x^3. So can someone explain what I'm missing here...
 
Physics news on Phys.org
You need to use the chain rule because x is some function of t. What you have done above is find dv/dx. Now you have correctly identified dx/dt as v and you know v = a/x, so what is (dv/dx)*(dx/dt)?
 
wow awesome thanks that clears up a lot. I almost gave up on anyone answering me. I read that there was a way to close a thread or say that the problem is solved but I'm not seeing it on here so I guess'll have to leave it as is.
 
The forum software was upgraded recently and I think only mentors can mark it solved at the minute. Just leave it as it is for now. :smile:
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top