MHB Mechanics- connected particles

Click For Summary
SUMMARY

The discussion focuses on the mechanics of connected particles involving pulleys, specifically analyzing the acceleration and time calculations for two masses connected by a string. The acceleration is established at 2 m/s², with the speed of mass P reaching 1 m/s when mass Q reaches the pulley. The time taken for mass Q to reach the pulley is calculated as 0.8 seconds, while the total time after the string breaks is confirmed to be 0.9 seconds, utilizing kinematic equations for uniformly accelerated motion and free fall.

PREREQUISITES
  • Understanding of Newton's laws of motion
  • Familiarity with kinematic equations
  • Knowledge of free fall dynamics
  • Ability to solve quadratic equations
NEXT STEPS
  • Study the application of Newton's second law in pulley systems
  • Learn how to derive kinematic equations for uniformly accelerated motion
  • Explore the effects of tension in strings on connected masses
  • Practice solving quadratic equations in physics problems
USEFUL FOR

Students and educators in physics, particularly those studying mechanics, as well as anyone involved in solving problems related to connected particles and pulley systems.

Shah 72
MHB
Messages
274
Reaction score
0
20210530_213825.jpg

I got the speed of p when q reaches the pulleys = 1m/s, a= 2m/s^2
Iam getting time = 0.8s for q(b)
 
Mathematics news on Phys.org
You really need to figure out how to post a readable image ...

atwood.jpg


Both masses will have the same magnitude of acceleration. The tension in the string on both sides of the pulley will be the same.

$Mg - T = Ma$

$T - mg = ma$

solve for the system for acceleration, then use your kinematics equations for uniformly accelerated motion to answer the questions.
 
Last edited by a moderator:
skeeter said:
You really need to figure out how to post a readable image ...

View attachment 11169

Both masses will have the same magnitude of acceleration. The tension in the string on both sides of the pulley will be the same.

$Mg - T = Ma$

$T - mg = ma$

solve for the system for acceleration, then use your kinematics equations for uniformly accelerated motion to answer the questions.
I got the ans for this.
 
skeeter said:
You really need to figure out how to post a readable image ...

View attachment 11169

Both masses will have the same magnitude of acceleration. The tension in the string on both sides of the pulley will be the same.

$Mg - T = Ma$

$T - mg = ma$

solve for the system for acceleration, then use your kinematics equations for uniformly accelerated motion to answer the questions.
Iam still having doubts with q(b)
For q(a)
I got a= 2m/s^2 and speed of p when q reaches the pulley = 1m/s
Q(b)Time when the system is released v= u+at1
t1=0.5s
After the string breaks, there is constant speed
I don't understand
 
skeeter said:
You really need to figure out how to post a readable image ...

View attachment 11169

Both masses will have the same magnitude of acceleration. The tension in the string on both sides of the pulley will be the same.

$Mg - T = Ma$

$T - mg = ma$

solve for the system for acceleration, then use your kinematics equations for uniformly accelerated motion to answer the questions.
20210602_182216.jpg
 
when the string breaks, P is 1.2m above the ground moving downward with initial speed of 1 m/s and is in a state of free fall.

$\Delta y = v_{y_0} \cdot t_2 - \dfrac{1}{2}g t_2^2$
 
skeeter said:
when the string breaks, P is 1.2m above the ground moving downward with initial speed of 1 m/s and is in a state of free fall.

$\Delta y = v_{y_0} \cdot t_2 - \dfrac{1}{2}g t_2^2$
The ans is 0.1s but the textbook says 0.9s
 
skeeter said:
when the string breaks, P is 1.2m above the ground moving downward with initial speed of 1 m/s and is in a state of free fall.

$\Delta y = v_{y_0} \cdot t_2 - \dfrac{1}{2}g t_2^2$
Oh I got it. It will be a quadratic equation and I solve using quadratic formula
 
skeeter said:
when the string breaks, P is 1.2m above the ground moving downward with initial speed of 1 m/s and is in a state of free fall.

$\Delta y = v_{y_0} \cdot t_2 - \dfrac{1}{2}g t_2^2$
Thank you so much. t2= 0.4s so total time will be 0.9 s
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
985
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K