Mechanics - work done conservation of energy *Help needed*

AI Thread Summary
A train with a mass of 250 tonnes accelerates up a 1 in 100 incline, reaching 45 Kph after 200m, while facing a constant frictional resistance of 30KN. The discussion focuses on calculating the work done by the engine using conservation of energy principles rather than force and kinematic equations. Participants emphasize the importance of accounting for both potential energy changes due to elevation and kinetic energy changes from speed. The correct approach involves equating the work done by the engine and friction to the total energy change in the system. Clarification is sought on how to properly apply these energy equations to solve the problem.
EddyH
Messages
2
Reaction score
0

Homework Statement


A train with a mass of 250 tonnes starts from rest and accelerates up an incline of 1 in 100 attaining a speed of 45 Kph after traveling 200m. If the frictional resistance to motion is constant at 30KN calculate the work done by the engine using the principle of conservation of energy

Homework Equations


Possible relevant equations:

Work done= Force*Distance
Force=Mass*acceleration
Kinetic energy = 1/2*Mass*Velocity^2
Potential energy= Mass*Gravity (9.81)* Height

The Attempt at a Solution



Force= 250*103 Kg*12.5= 3 125 000 kg/m/s
Work done= 3 125 000*200= 625 000 000(J)
Not sure whether this is along the right lines or not. I am also unsure where the frictional resistance and gravity is used.

Thank you for your time.
 
Physics news on Phys.org
EddyH said:

Homework Statement


A train with a mass of 250 tonnes starts from rest and accelerates up an incline of 1 in 100 attaining a speed of 45 Kph after traveling 200m. If the frictional resistance to motion is constant at 30KN calculate the work done by the engine using the principle of conservation of energy

Homework Equations


Possible relevant equations:

Work done= Force*Distance
Force=Mass*acceleration
Kinetic energy = 1/2*Mass*Velocity^2
Potential energy= Mass*Gravity (9.81)* Height

The Attempt at a Solution



Force= 250*103 Kg*12.5= 3 125 000 kg/m/s
net force is mass times acceleration. You are not using the net force or the acceleration.
Work done= 3 125 000*200= 625 000 000(J)
Your incorrect values are calculating the net total work done. You are looking for the work done by the engine only.
Not sure whether this is along the right lines or not. I am also unsure where the frictional resistance and gravity is used.

Thank you for your time.
the problem is asking you to use conservation of energy, not force and kinematic equations. What is the conservation of energy equation that relates work and energy?
 
Sorry to be a pain, but I do not know how to go about this, please can you explain?
Thank you
 
Say, Eddy, if you are asked to solve the problem using energy methods, you should know about the possible energy equations to use, for example, you should know that the work done by non conservative forces (like the engine force and friction force in this example) must equal the change in PE plus the change in KE of the system. Give it a try.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top