Metric for rating funtion accuracy from R^m to R.

TylerH
Messages
729
Reaction score
0
I'm writing program in which I generate pseudo random expressions with the hope of finding one that closely approximates the given data set. The functions map from R^m (an m-tuple of reals) to a real. What I need is a way to rate the functions by their accuracy. Are there any known methods for doing this? Maybe something from stats.

Ideally this would be a method that would take a list of expected outputs and actual outputs and return a real number. A uniform distribution would be good, but not required.
 
Mathematics news on Phys.org
A standard thing is to do something like
\sum_{j} \left( y_j - z_j \right)^2

where the yj are the actual data that you measured, and the zj are the predictions that you made (this is called the sum of squared errors). It's used mostly because it's easy to work with sums of squares when doing analytical calculations (like trying to minimize it). If you're doing a numerical method, people will often instead use the sum of the absolute values of the errors, especially if they consider the property "makes sure there are no significant outliers at the cost of being off by slightly more on average" to be a negative quality
 
I went with the abs value one because, by nature of the fact they're all random, there are going to be a lot of bad solutions. So I thought a metric which doesn't underestimate their badness would be better. Thanks.
 
TylerH said:
I went with the abs value one because, by nature of the fact they're all random, there are going to be a lot of bad solutions. So I thought a metric which doesn't underestimate their badness would be better. Thanks.

I don't really understand what this post is trying to get at... do you mean that your data has a lot of noise in it?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top