Millikan Oil Drop Experiment Question

AI Thread Summary
The discussion centers on calculating the charge of an oil drop in the Millikan Oil Drop Experiment, given its mass, acceleration, distance between plates, and potential difference. The net force on the drop is derived from the gravitational and electric forces, leading to a calculated charge of approximately -1.15 x 10^-17 C. This charge corresponds to about 72 electrons, raising the question of whether it must be a whole number. It is confirmed that the charge should be quantized as integer multiples of the elementary charge, with discrepancies attributed to experimental uncertainty. The analysis aligns with the historical findings of Millikan, who observed charges ranging from 1 to 136 times the elementary charge.
Kennedy111
Messages
27
Reaction score
0

Homework Statement


A 1.50 x 10^-14 kg oil drop accelerates downward at a rate of 1.80 m/s^2 when placed between two horizontal plates that are 9.40 ch apart. The potential difference between the two plates is 980 V. Determine the magnitude of the charge on the oil drop.

m = 1.50 x 10^-14 kg
a = 1.80 m/s^2 (down)
d = 9.40 cm = 9.40 x 10^-2 m
V = 980 V


Homework Equations


Fnet = Fg + Fe
Fnet = ma
Fe = Eq
Fg = mg
E = V/d


The Attempt at a Solution


Fnet = Fg + Fe
Fe = Fnet - Fg
= ma - mg
= ((1.50 x 10^-14 kg)*1.80 m/s^2)) - ((1.50 x 10^-14 kg)(9.81 m/s^2))
= -1.2015 x 10^-13 N

E = V/d
= (980 V) / (9.40 x 10^-2 m)
= 10425.53191 V/m

Fe = Eq
q = Fe / E
= (-1.2015 x 10^-13 N) / (10425.53191 V/m)
= -1.1524592 x 10^-17 C

The charge on the oil drop is approx. -1.15 x 10^-17 C ?
 
Physics news on Phys.org
Looks ok to me. Does the charge correspond to an integer number of electrons on the drop?

{Accurate analysis of the Millikan Oil Drop Experiment would take into account the viscosity of the air and the buoyant force acting on the drop, and involves measuring terminal velocities rather than accelerations. See http://en.wikipedia.org/wiki/Oil_drop_experiment . But what you did looks correct based on the information given.}
 
If I divide that charge by 1.60 x 10^-19 C I get 72.0207 electrons. Does it have to be a whole number?
 
Kennedy111 said:
Does it have to be a whole number?

Yes! At least if the data is good! That's one reason the experiment is considered a classic. Millikan found the net charge of the drops to be "quantized" as integer multiples of a fundamental amount of charge e. 72.02 is close to an integer. The discrepancy can be chalked up as "experimental uncertainty in the data".

[EDIT: Millikan reported net charges on the drops ranging from 1*e to 136*e. See http://www.aip.org/history/gap/PDF/millikan.pdf ]
 
Last edited:
Okay, I understand! Thank you for your help!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top