Minimal and characteristic polynomial

specialnlovin
Messages
19
Reaction score
0
Let V =Mn(k),n>1 and T:V→V defined by T(M)=Mt (transpose of M).
i) Find the minimal polynomial of T. Is T diagonalisable when k = R,C,F2?
ii) Suppose k = R. Find the characteristic polynomial chT .
I know that T2=T(Mt))=M and that has got to help me find the minimal polynomial
 
Physics news on Phys.org
You'll need to find a polynomial p(x)=x^n+...+a_1x+a_0, such that p(T)=0, i.e.

T^n+...+a_1T+a_0I=0

You know that T^2(M)=M, can you use this to find a suitable polynomial??
 
All i can think of is f(x)=1 or f(T)=I
 
Come on, how do you write T^2(M)=M as a polynomial in T??
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top