Minimal Prime Tuplets and Nontrivial Bounds for A008407 Sequence

  • Thread starter Thread starter CRGreathouse
  • Start date Start date
  • Tags Tags
    Prime
CRGreathouse
Science Advisor
Homework Helper
Messages
2,832
Reaction score
0
I was wondering if any nontrivial bounds for http://www.research.att.com/~njas/sequences/A008407 were known. This is the sequence of minimal width for k-tuplets of primes allowed by divisibility concerns. a(2) = 2 since n, n+2 could both be prime; n, n+1 isn't admissible since then either n or n+1 is even.

Clearly a(n+1) >= a(n) + 2, but practically speaking a(n) seems to grow superlinearly.
 
Last edited by a moderator:
Physics news on Phys.org
Ah, it just hit me: an appropriate reformulation of the sequence is superadditive. Even better, http://www.research.att.com/~njas/sequences/A023193 is subadditive, so I can just use the best ratio with some additive constant as an absolute bound.

OK, here's what I have: A023193(n) <= floor(n*331/2467+33.1). This comes from the fact that A023193(4934) = 662, so 4934 consecutive numbers can't contain more than 662 primes as long as the smallest number in the range > 4934. So clearly every 4934n numbers can't contain more than 662n primes, since each of the n subintervals must be legal as well. The additive constant 33.1 is such that this holds for 1 <= n <= 4934, and so must hold for all n >= 1. (Also, checking shows that this actually holds even if the smallest number is less than 4934.)
 
Last edited by a moderator:
The purpose of the thread was to find an upper bound on the number of primes in a 'small' interval h, \pi(x)-\pi(x-h). Under the Riemann hypothesis we have

\left|\pi(x)-\pi(x-h)-(\operatorname{li}(x)-\operatorname{li}(x-h))\right|\le\frac{\ln x\sqrt x+\ln(x-h)\sqrt{x-h}}{8\pi}\approx\frac{\ln x\sqrt x}{4\pi}

for x-h > 3000, but we expect a large degree of cancellation. Using the above result we have

\pi(x)-\pi(x-h)\le\frac{331h}{2467}+33.1

which may be tighter for small h or large x and is not dependent on the RH or any other unproved hypothesis -- though the k-tuple conjecture would mean that A02319 is a maximum rather than 'just' an upper bound.
 
So equating the errors in the two methods, I get
\frac{331h}{2467}+33.1\approx\frac{\ln x\sqrt x}{4\pi}
which is
h\approx2.372\ln x\sqrt x-4.44

So for large x, this method can be useful. Still, I wonder if there is a sublinear bound for this, which could greatly increase the useful range of the approximation. Has anyone seen something like this? Is there a book or a paper I could read?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top