- 24,488
- 15,057
Well, all these quantities are measured with the corresponding measurement devices like spectrometers, particle detectors (for the Z-boson mass and width you measure dilepton spectra in various ways), etc. you find in the physics labs around the world. In physics in fact quantities are defined by giving appropriate (equivalence classes of) measurement protocols to quantitatively observe them. That's why they are called observables after all. Also there is nothing more needed concerning the application of the quantum-theoretical formalism (e.g., formulated as the representation of an observable algebra on Hilbert space, based on various symmetry principles which themselves are discovered by observation of conservation laws) than Born's rule, i.e., the minimal interpretation.
Where you need something like a "thermal interpretation" is when it comes to understand the overwhelming success of classical physics (including classical relativistic and non-relativistic mechanics, electrodynamics, and thermodynamics) to describe macroscopic systems. Here you need some coarse graining to describe macroscopic effective (relevant) degrees of freedom as (spatio-temporal) averages over many microscopic degrees of freedom.
Where you need something like a "thermal interpretation" is when it comes to understand the overwhelming success of classical physics (including classical relativistic and non-relativistic mechanics, electrodynamics, and thermodynamics) to describe macroscopic systems. Here you need some coarse graining to describe macroscopic effective (relevant) degrees of freedom as (spatio-temporal) averages over many microscopic degrees of freedom.