omoplata
- 327
- 2
From "Modern Quantum Mechanics, revised edition" by J.J. Sakurai, page 56.
In equation (1.7.31) it is given,
\begin{eqnarray}<br /> \delta(x' - x'') & = & | N |^2 \int dp' \exp \left[ \frac{ip'(x'-x'')}{\hbar} \right] \\<br /> & = & 2 \pi \hbar | N |^2 \delta(x' - x'' )<br /> \end{eqnarray}
How does the right side happen. Is this a definition of the delta function?
In equation (1.7.31) it is given,
\begin{eqnarray}<br /> \delta(x' - x'') & = & | N |^2 \int dp' \exp \left[ \frac{ip'(x'-x'')}{\hbar} \right] \\<br /> & = & 2 \pi \hbar | N |^2 \delta(x' - x'' )<br /> \end{eqnarray}
How does the right side happen. Is this a definition of the delta function?