Moment generating function, CDF and density of a random variable

icup007
Messages
2
Reaction score
0
Assume X is a random variable under a probability space in which the sample space ?= {a,b,c,d,e}. Then if I am told that:

X({a}) = 1
X({b}) = 2
X({c}) = 3
X({d}) = 4
X({e}) = 5

And that:
P({a}) = P({c}) = P({e}) = 1/10
P({b}) = P({d}) = 7/20

Find the C.D.F of X, the density of X and the moment generating function of X.


Thanks in advance!
 
Physics news on Phys.org
I don't think it's a good use of people's time here to do your homework for you.

Have you started? If there's a place where you're getting stuck, I'm sure people can be helpful.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top