Moment of inertia of hollow cylinder, axis orthogonal to length

AI Thread Summary
The discussion focuses on calculating the moment of inertia of a hollow cylinder with an axis orthogonal to its length, referencing the Feynman lectures. The initial approach involved slicing the cylinder into thin rods and applying the parallel axis theorem, but resulted in an incorrect formula. The error was identified as treating the hollow cylinder as solid, leading to confusion in the calculations. After reconsidering the method and partitioning the cylinder into concentric hollow cylinders, the correct moment of inertia was successfully derived. This highlights the importance of accurately defining the geometry in physics calculations.
jds17
Messages
7
Reaction score
1
Hi, I am working through the Feynman lectures on physics and trying to calculate the moment of inertia stated in the title.
(the taxis of rotation going through c.m., orthogonal to length).
My approach is to slice the cylinder into thin rods along the length, using the parallel taxis theorem and the result for a rod.
Unfortunately, I get as result: I = M ( L^2 / 12 + r^2 / 2). I.e. the last numerator comes out as 2 instead of 4, as stated in section
19-2. The corresponding expression comes from summing up dm sum( z_i ^ 2), where dm is the mass of a single rod and z_i
the height of the rod's center of inertia. Perhaps my mistake lies in handling the 2-dim slices as 3-dim rods?
 
Last edited:
Physics news on Phys.org
I would slice the cylinder into rings instead. It makes integration far easier.
 
jds17 said:
My approach is to slice the cylinder into thin rods along the length, using the parallel taxis theorem and the resultat for a rod.
Unfortunately, I get as result. I = M ( L^2 / 12 + r^2 / 2). I.e. the last numerator comes out as 2 instead of 4, as stated in section
19-4.
Your method looks OK to me. Feynman lists (in table 19-2) the moment of inertia of a solid cylinder.
 
@Doc Al: Thank you for your reply, I took the cylinder as a hollow one, and this seems to be my mistake. I will try
to do the calculation again for the solid cylinder as soon as I get back home.

@K^2: thank you, too, but I wanted to find out what was wrong with my thinking instead of doing a different
calculation. I will try yours, too, although it seemed more complicated when I first considered it
 
Hi, everything turned out nicely, considering a partition into concentric hollow cylinders, adding their M.I.s (calculated as before) up and going to the limit gives the answer in table 19-2!
 
Last edited:
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top