Moment of inertia of this shape about the x-axis

AI Thread Summary
The discussion revolves around calculating the moment of inertia of a shape about the x-axis, with the initial calculations yielding an incorrect result. The user initially used the equation I = ∫ y² dm and derived a mass element dM = μ * dy * (4y - 16), leading to an incorrect integral evaluation. Another participant pointed out that the correct expression for x should be x = 16 - 4y, which affects the mass element calculation. The final integral should be adjusted to μ∫ (12y² - 4y³) dy for accurate results. The conversation emphasizes the importance of verifying the equations and integration limits used in the calculations.
jisbon
Messages
475
Reaction score
30
Homework Statement
Calculate moment of inertia of a 2d plane rotating about x axis. Mass per unit area of plate = ##1.4g/cm^2## , total mass = 25.2g
Relevant Equations
##I=\int y^2 dm##
1567752378952.png

I've attempted this question, but the answer seems to be incorrect. Here's my workings:
##I=\int y^2 dm## - standard equation
##dM = \mu * dy * x## - take small slice and find mass of it
##x = 4y-16## - convert equation in terms of x to sub in later
##dM = \mu * dy * 4y-16##
##I=\int y^2 \mu * dy * 4y-16##
##I=\mu\int y^2(4y-16) dy##
##I=\mu\int 4y^3-16y^2 dy##
##I=\mu \int_{0}^{3} 4y^3-16y^2 dy## = 12.6, which is not the answer.
Any clues why?
 
Physics news on Phys.org
Something wrong in your final calculation of the integral, I found it to be
##\int_0^3 (4y^3-16y^2 )dy=-63## and if ##\mu=1.4## then the final value should be -88.2. The minus sign can be explained (because you took ##x=4y-16## while i believe it is ##x=16-4y##).
 
Delta2 said:
Something wrong in your final calculation of the integral, I found it to be
##\int_0^3 (4y^3-16y^2 )dy=-63## and if ##\mu=1.4## then the final value should be -88.2. The minus sign can be explained (because you took ##x=4y-16## while i believe it is ##x=16-4y##).
The answer seems to be 37.8g/cm^2 though :/ Any ideas on this?
 
At the moment I can't spot any other mistake. Are we sure that the equation of y(x) as well as the boundaries of integration (from y=0 to y=3 or from x=4 to x=16) are correct?
 
Delta2 said:
At the moment I can't spot any other mistake. Are we sure that the equation of y(x) as well as the boundaries of integration (from y=0 to y=3 or from x=4 to x=16) are correct?
Equation of y is y= -1/4x+4 , so it should be correct :/
 
I think I spotted a mistake, the mass element should be ##dM=\mu(x-4)dy## so the final integral should be ##\mu\int_0^3 (12y^2-4y^3)dy##
 
Last edited:
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Back
Top