Momentum Operator question - Proof found in Intro to Griffiths QM

srabate
Messages
4
Reaction score
0
Hi all

I am trying to go through the Griffiths Intro to QM book and I'm afraid I'm already stumped!

He determines the momentum operator by beginning with the following equation:

<x>=\int_{-\infty}^\infty {x|\psi(x)|^2}

He takes the time derivative and manipulates the integral:
(I'm skipping a few steps because I thought they made sense. If you want me to type them up I will)

\frac{d<x>}{dt} = -\frac{i\hbar}{2m}\int_{-\infty}^\infty {\psi^\ast(x)\frac{\partial\psi(x)}{\partial x} - \psi(x)\frac{\partial\psi^\ast(x)}{\partial x}}dx

Then, he randomly says "Performing integration by parts on the second term, we conclude: "

\frac{d<x>}{dt} = -\frac{i\hbar}{m}\int_{-\infty}^\infty {\psi^\ast(x)\frac{\partial\psi(x)}{\partial x}dx}

Why do we not perform integration by parts on the first term? I feel like I'm missing something really stupid. Is there some sort of assumption that would allow us to combine the first and second terms? (which would explain why the 2m becomes just m).

Thank you!
Abate

p.s. attached are the two pages from griffiths where this is found.
 

Attachments

Physics news on Phys.org
Hello,

All you have to note is that by performing integration by parts for the second term:
\int_{- \infty}^{+ \infty} \psi \frac{ \partial \psi^* } {\partial x} \mathrm d x = 0 + \int_{- \infty}^{+ \infty} \psi^* \frac{ \partial \psi } {\partial x} \mathrm d x
which is equal to the first term. This explain the disappearance of the factor 2.

(You could've also done integration by parts on the first term instead, in which case you would've gotten the same as the 2nd term.)
 
of course! I have no idea how I didn't see that.

Thanks!
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top