Bunny-chan
- 105
- 4
Homework Statement
I'm having some issues with the following exercise:
The graph below represents the marking of a vehicle speedometer in funtion of time. Elaborate the corresponding graphs of acceleration and space traveled in function of time. What is the average acceleration of the vehicle between t = 0 and t = 1 min? And between t=2min and t = 3min?
Homework Equations
The Attempt at a Solution
First I obtained all the equations of the straight lines, which are as follows:<br /> v(t)= \begin{cases} 90t, \textrm{ if } 0 \leq t \leq 0.5 \\ 45, \textrm{ if } 0.5 \leq t \leq 2 \\ -90t+225, \textrm{ if } 2 \leq t \leq 2.5 \\ 0, \textrm{ if } 2.5 \leq t \leq 3 \\ 150t-450, \textrm{ if } 3 \leq t \leq 3.5 \\ 75, \textrm{ if } 3.5 \leq t \leq 4.5 \\ -150t+750, \textrm{ if } 4.5 \leq t \leq 5 \end{cases}I know the acceleration graph data can be obtained by derivating the velocity functions and the displacement graph by integrating them, so:<br /> a(t)= \begin{cases} 90, \textrm{ if } 0 \leq t \leq 0.5 \\ 0, \textrm{ if } 0.5 \leq t \leq 2 \\ -90, \textrm{ if } 2 \leq t \leq 2.5 \\ 0, \textrm{ if } 2.5 \leq t \leq 3 \\ 150, \textrm{ if } 3 \leq t \leq 3.5 \\ 0, \textrm{ if } 3.5 \leq t \leq 4.5 \\ -150, \textrm{ if } 4.5 \leq t \leq 5 \end{cases}x(t)= \begin{cases} 45t^2 + C, \textrm{ if } 0 \leq t \leq 0.5 \\ 45t + C, \textrm{ if } 0.5 \leq t \leq 2 \\ -90t^2+225t + C, \textrm{ if } 2 \leq t \leq 2.5 \\ 0, \textrm{ if } 2.5 \leq t \leq 3 \\ 75t^2-450t + C, \textrm{ if } 3 \leq t \leq 3.5 \\ 75t + C, \textrm{ if } 3.5 \leq t \leq 4.5 \\ -75t^2 +750t + C, \textrm{ if } 4.5 \leq t \leq 5 \end{cases}And so I happily elaborated the graphs. And when I went to compare the results to the ones in my textbook, I realized there was no answer there. So I checked on the web and I found a document from an unknown source in which the question was solved, and I was faced with the following graphs:
So, how do I convert velocity (\frac{km}{h}) to position and acceleration? Any help to understand this would be greatly appreciated!
Last edited: