MTW Gravitation Ex. 25.16: Comparing Equations & Expressing u_0 in \tilde{L}

  • Thread starter Thread starter luinthoron
  • Start date Start date
  • Tags Tags
    Gravitation Shift
luinthoron
Messages
14
Reaction score
1
Hello, I am trying to work out this exercise for my personal research connected with my bachelor thesis. The task is to compare equations (25.42) and (25.47) and express $u_0$ in terms of \tilde{L}. I have so far put the two equations together getting

\begin{equation}
12u^2u_0\tilde{L}^2-18uu_0^2\tilde{L}^2-u_0^2\tilde{L}^2+2uu_0\tilde{L}^2-\tilde{E}_0^2=2u-1
\end{equation}

After this I tried putting some terms together but I think I am missing another equation since there are in fact two unknowns: $u_0$ and $\tilde{E}_0$ or is there some trick I am missing?

For those without access to MTW, here are the equations: \\

(25.42)
\begin{equation}
\left(\frac{\mathrm{d}u}{\mathrm{d}\varphi}\right)^2=\frac{\tilde{E}^2}{\tilde{L}^2}-\frac{1}{\tilde{L}^2}\left(1-2u\right)\left(1+\tilde{L}^2u^2\right)
\end{equation}

and (25.47)

\begin{equation}
\left(\frac{\mathrm{d}u}{\mathrm{d}\varphi}\right)^2+\left(1-6u_0\right)\left(u-u_0\right)^2-2\left(u-u_0\right)^3=\frac{\tilde{E}^2-\tilde{E}_0^2}{\tilde{L}^2}
\end{equation}

Thank you.
 
Physics news on Phys.org
Each equation expresses (du/dφ)2 in terms of a cubic in u. Expand out the cubics and equate the coefficients of each power of u.
 
Thank you for the advice. I ended up with:

\begin{equation}
\tilde{E}_0^2=4\tilde{L}^2u_0^3-\tilde{L}^2u_0^2+1
\end{equation}

\begin{equation}
3u_0^2-u_0=-\frac{1}{\tilde{L}^2}
\end{equation}

The second one is a quadratic equation, so I can write the solution

\begin{equation}
{u_0}_{1,2}=\frac{1\pm\sqrt{1-\frac{12}{\tilde{L}^2}}}{6} .
\end{equation}

But this would give a condition for \tilde{L}, which I find suspicious. Also which of the two roots is correct? It stays possitive in both cases and I can't come with any other clue to help me choose. Any additional hints, please?
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top